研究生: |
溫學賢 Shiue-Shien Weng |
---|---|
論文名稱: |
釩氧錯合物催化醣類半縮醛化反應及氯氧鉬錯合物催化過乙醯基醣類之硫醇醣酐化反應之研究 Vanadyl (Ⅳ) Species Catalyzed Acetalization Reaction and Diastereoselective β-Thioglycosylation of Peracetylated Saccharides Catalyzed by Molybdenum Species. |
指導教授: |
陳建添
Chen, Chien-Tien |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 589 |
中文關鍵詞: | 硫醣苷鍵化 、半縮醛化 、不對稱氧化 、亞柳胺基酸 、不對稱催化 |
英文關鍵詞: | Thioglycosylation, Peracetylated Saccharide, Asymmetric oxidation, Acetalization, Catalytic reaction |
論文種類: | 學術論文 |
相關次數: | 點閱:153 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文第一部分我們成功的發展了在室溫下以VO(OTf)2催化醛類與六圓環醣類的縮合催化反應,簡化合成4, 6-O-benzylidene的合成步驟,並且開發出完全以催化方式並以直接的二個連續性步驟,在S-thiocrecol glucopyranoside 的1o醇及三個2o醇選擇性的植入不同的保護基。如此表示我們發展出了簡單合成寡醣構築單元的方法,為催化反應在醣類化學的應用開啟一個先例。
本論文第二部分我們成功發展以MoO2Cl2催化的新型態的過醯基化醣類的醣酐健生成反應,也是目前為止第一個使用催化量的催化劑應用在此類型反應,依據產物的立體化學 ( β-selective ) 強烈顯示MoO2Cl2催化系統有鄰接基效應,並且我們也成功的連續應用催化形式,以硫醣酐化 ( thioglycosylation )-酯基交換 ( transesterification ) 去保護- 半縮醛化反應 ( acetalization ) 發展出簡易合成寡醣合成單元的核心單體的方法,期待將來可延伸應用在醣類化學的合成上。
本論文第三部分我們藉由控制在N-salicylidene 衍生的一系類氧釩錯合物苯環C(3) 位置上植入取代基稱成的,3, 5-di-tbutyl-N-salicylidene-Lucinate 62 衍生的氧釩錯合物,成功的區分α-羫基酯類或醯胺衍生物的鏡像異構物,並藉此誘導出高效率及高選擇性的不對稱有氧性氧化反應,而得到了近乎專一性的光學對拆離效果。除了一般的α-羫基酯類或醯胺,以3, 5-dibromo-N-salicylidene 64 衍生的氧釩錯合物,也可以很成功的應用在紫杉醇C(13) 側鏈 ( Taxol C(13) side chain )的光學對離析,並得到與天然物相同絕對立體組態的完全光學活性紫杉醇C(13)側鏈。
而藉由改變催化劑合成步驟,以鉀鹽 ( K2CO3, KOtBu, KOH ) 取代醋酸鈉 ( NaOAc ) 可得到X-Ray單晶繞射純度以催化劑62 ( 3, 5-di-tBu-N-salicylidene) 氧釩錯合物為骨架的C4-對稱五核金屬簇,其在α-羫基芐基醯胺的不對稱氧化催化活性與催化劑62近乎相同,這也是第一個具有完美結構C4-對稱性多核金屬簇應用在不對稱反應的巨分子。這些掌性氧釩錯合物為空氣、水穩定的催化劑,並且在反應完成後可以經管柱層析分離回收而再利用。因此這種利用氧氣做為共氧化劑並且在室溫條件進行的高效率及高立體專一性反應,實為在環保化學技術 ( greener chemistry ) 及不對稱催化的一大進展。
Abstract.
In the first part of this thesis, we have documented the first successful example of direct catalytic acetal formation between aromatic aldehydes with simple as well as functionalized diols derived from monosaccharides by vanadyl triflate. The new protocol is mild (ambient temperature), regio- and chemo-selective. No dehydrating agent or preformed 1,1-dimethoxyacetal reagent is required. Notably, the water-tolerant catalyst can be recovered easily from the aqueous layer. In combination with our developed catalytic acylation and regioselective acetal opening techniques, a handy three-step catalytic protocol has been established for the construction of a functional differentiated thioglycoside serving as a universal oligosaccharide building block. The current and existing versatile vanadyl and oxometallic species-mediated catalyses augur well for their potential applications in carbohydrate chemistry.
In the second part, we have documented the first successful example of using neutral and water-tolerant MoO2Cl2 as catalytic promoter for thioglycosylation of peracetylated mono and di-saccharides with exclusive diastereocontrols, which benefits from the neighboring acyl or alkenyl group participation. The successful integration of acylation, thioglycosylation, and trans-esterification catalyzed by MoO2Cl2 allow for ready access of 1-thioglycodides in a green sense. Further manipulation can lead to the ultimate universal monosaccharide all resorted to MoO2Cl2 and oxometallic-mediated catalysis, auguring well for their extensive uses in delicate carbohydrate synthesis.
Finally, a series of chiral vanadyl carboxylates derived from N-Salicylidene-L--amino acids and vanadyl sulfate has been developed. These configurationally well-defined complexes were examined for the kinetic resolution of double- and mono-activated 2o alcohols. The best chiral templates involve the combination of L-tert-leucine and 3,5-di-t-butyl-, 3,5-diphenyl-, or 3,4-dibromo-salicyaldehyde. The resulting vanadyl(V)-methoxide complexes after recrystallization from air-saturated methanol serve as highly enantioselective catalysts for asymmetric aerobic oxidation of -hydroxyl-esters and amides with a diverse array of -, O-, and N-substituents at ambient temperature in toluene. The asymmetric inductions of the oxidation process are in the range of 10 - > 100 in terms of selectivity factors (krel) in most instances. The new aerobic oxidation protocol is also applicable to the kinetic resolution of C-13 taxol side chain with high selectivity factor (krel 35). X-ray crystallographic analysis of an adduct between a given vanadyl complex and N-benzyl-mandelamide allows for probing the stereo-chemical origin of the nearly exclusive asymmetric control in the oxidation process.
Among the chiral vanadyl complexes, the 3,5-di-tert-butyl analog, the architectural nature of the vanadyl(V) complex highly depends on the base used during the complex-formation event. A pentanuclear C4-symmetric complex was formed when potassium salts were employed instead of the corresponding sodium salts. A central vanadate(V) unit serves to grip four identical monomeric units together, by which a potassium ion cooperated with the vanadate(V) unit to hold the whole structure is sitting on top of the four flanking units through carbonyl coordinations. This complex was subjected to the asymmetric aerobic oxidation of various racemic -hydroxy-esters and amides with excellent selectivity factors. A linear relationship between the ees of the complex and the ees of the recovered optically active substrates indicates the monomeric nature of the active complex in solution.
參考文獻
1. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley & Sons: New York, 1980.
2. (a) McKenna, C. E.; Benemann, J. R.; Traylor, T. G. Biochem. Biophys. Res. Commun. 1970, 41, 1501. (b) Hales, B. J.; Case, E. E.; Moringstar, J. E.; Dzeda, M. F.; Mautner, A. Biochemistry 1986, 25, 7251. (c) Robson, R. L.; Eady, R. R.; Richardson, T. H.; Miller, R. W.; Hawkins, M.; Postgate, J. R. Nature 1986, 322, 388. (d) George, G. N.; Coyle, C. L.; Hales, B. J.; Cramer, S. P. J. Am. Chem. Soc. 1988, 110, 4057. (e) Hales, B. J.; True, A. E.; Hoffman, B. M. J. Am. Chem. Soc. 1989, 111, 8519.
3. (a) Floriani, C.; Mazzanti, M.; Chiesi-Villa, A.; Guastini, C. Angew. Chem., Int. Ed. Engl. 1988, 27, 576. (b) Rehder, D.; Priebsch, W.; von Oeynhausen, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1221. (c) Sakurai, H.; Tsuchia, K. FEBS Lett. 1990, 260, 109. (d) Holmes, S.; Carrano, C. J. Inorg. Chem. 1991, 30, 1231. (e) Clague, M. J.; Keder, N. L.; Butler, A. Inorg. Chem. 1993, 32, 4754. (f) Clague, M. J.; Butler, A. J. Am. Chem. Soc. 1995, 117, 3475. (g) Andersson, M.; Conte, V.; Di Furia, F.; Moro, S. Tetrahedron Lett. 1995, 36, 2675.
4. (a) Macara, I. G.; McLeod, G. C.; Kustin, K. Comp. Biochem. Physiol., B: Comp. Biochem. 1979, 63B, 299. (b) Oltz, E. M.; Bruening, R. C.; Smith, M. J.; Kustin, K.; Nakanishi, K. J. Am. Chem. Soc. 1988, 110, 6162. (c) Kustin, K. Acc. Chem. Res. 1991, 24, 117. (d) Taylor, S. W.; Kammerer, B. Bayer, E. Chem Rev. 1997, 97, 333.
5. (a) Kustin, K.; Macara, I. G. Comments Inorg. Chem. 1982, 2, 1. (b) Nechay, B. R. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 501. (c) Stoecker, B. J.; Hopkins, L. L. Biochemistry of the Essential Ultratrace Elements; Plenum Press: New York, 1984; p 239. (d) Nielsen, F. H. Trace Minerals in Foods; Marcel Dekker: New York, 1988; p 398. (e) McLaughlin, M. L.; Cronan, J. M., Jr.; Schaller, T. R.; Snelling, R. D. J. Am. Chem. Soc. 1990, 112, 8949. (f) Rehder, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 148.
6. (b) For oxidative couplings, see: Hwang, D. R.; Chen, C. P.; Uang, B. J. J. Chem. Soc. Chem. Commun. 1999, 1207. (c) Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C.-T. Org. Lett. 2001, 3, 869. (d) For vicinal dialkylation of cyclic enones, see: Hirao, T.; Takada, T.; Sakurai, H. Org. Lett. 2000, 2, 3659.
7. For a general review, see: Toshikazu Hirao Chemical Reviews 1997, 97, 8, 2707-2724
8. Kaneda, K.; Kawanishi, Y.; Jitsukawa, K.; Teranishi, S. Tetrahedron Lett. 1983, 24, 5009.
9. Kirihara, M.; Ochiai, Y.; Takizawa, S.; Takahata, H.; Nemoto, H. Chem. Commun. 1999, 1387.
10.Gould, E. S.; Hiatt, R. R.; Irwin, K. C. J. Am. Chem. Soc. 1968, 90, 4573. Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136. Sharpless, K. B.; Verhoeven, T. R. Aldrichim. Acta 1979, 12, 63.
11. (a) Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159. (b) Mihelich, E. D. Stevens, R. V.; Chang, J. H.; Lapalme, R.; Schow, S.; Schlageter, M. G.; Shapiro, R.; Weller, H. N. J. Am. Chem. Soc. 1983, 105, 7719. (c) Corey, E. J.; De, B. J. Am. Chem. Soc. 1984, 106, 2735.
12. (a) E. D. Mihelich, Tetrahedron Lett. 1979, 4729. (b) Rossiter, B. E.; Verhoven, T. R.; Sharpless, K. B. Tetrahedron Lett. 1979, 4733.
13. Hoshino, Y.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 10452-10453.
14. Wei Zhang, Arindrajit Basak, Yuji Kosugi, Yujiro Hoshino, Hisashi Yamamoto Angew. Chem. Int. Ed. 2005, 44, 4389-4391.
15. Carrick, W. L.; Karapinka, G. L.; Kwiatkowski, G. T. J. Org. Chem. 1969, 34, 2388.
16. Hwang, D.-R.; Chen, C.-P.; Uang, B.-J. Chem. Commun. 1999, 1207-1208.
17. Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C-T. Org. Lett 2002, 4, 15, 2529-2532.
18. Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. Chem. Commun. 2002, 914.
19. Barhate, N. B. and Chen, C-T Org. Let, 2002, 4, 15, 2529-2532.
20. C. Bolm, F. Bienewald Amgew. Chem. Int. Engl. 1995, 34, 2640-2642.
21. C, Drago; L, Caggiano; F. Richard; W. Jacjson Angew. Chem. Int.
Engl. 2005, 44, 7221-7223.
22. A. Togni Organometallics 1990, 9, 3106.
23. Chen,C-T; Hon, S-W; Weng, S-S Synlett. 1999, 6, 816-818.
24. Chen,C-T; Kuo, J-H; Li, C-H; N. B. Barhate, Hon, S-W; Li, T-W; Chao, S-D; Liu, C-C; Li,Y-C; Chang, I-H; Lin, J-S; Liu, C-J; Chou Y-C Org. Lett 2001, 3, 23, 3729-3732.
25. Chen,C-T; Kuo, J-H; Kuo, J-H; Ku,C-H; Weng, S-S; Liu, C-Y J. Org. Chem. 2005, 70, 1328-1339.
26. (a) Hiort, C.; Goodisman, J.; Dabrowiak, J. C. Biochemistry 1996, 35, 12354. (b) Kwong, D. W. J.; Chan, O. Y.; Wong, R. N. S.; Musser, S. M.; Vaca, L.; Chan, S. I. Inorg. Chem. 1997, 36, 1276. (c) Chen,C-T; Lin, J-S; J-H; Kuo, J-H; Weng, S-S; Cuo, T-S; Lin, Y-W; Cheng, C-C; Huang, Y-C; Yu, J-K; Chou, P-T Org. Lett 2004, 6, 24, 4471.
27. Lippard, S. J.; Berg. . M. Principles of Bioinorganic Chemisry; University Science Books: sausalito, CA, 1994, p 106.
28. Fraústo da Silva, J. J. R.; williams, R. J. P. The Biological chemistry of elements; clarendon Press: Oxford. UK, 1991; p 513.
29. Bortels, H. Zentralbl. Bakteriol. Parisitenkd. Infektionskr. 1936, 95, 193-218.
30. E. C. De Renzo, E. Kaleita, P. Heytler, J. J. Oleson, B. L. Hutchings, and J. H. Williams. J. Am. Chem. Soc. 1953, 75, 753.
31. (a) Spence, J. T. Coord. Chem. Rev. 1969, 4, 475-498. (b) Bray. R. C.; Swann, J. C. Structure and Bonding 1971, 11, 107-144. (c) Stiefel, E. I.; Coucouvanis, D.; Newton, W. E., Eds. Molybdenum Enzymes, Cofactors and model Systems; ACS Symposium Series 535; American Chemical Society: Washington, DC, 1993.
32. Hille, R. Chem. Rev. 1996, 96, 2757-2816.
33. J. L. Que; Tolman, W. B.; Comprehensive Coordination Chemistry II,
McCleverty & Meyer From Biology to Nanotechnology., volume 8,
Chapter 18, p 459-479.
34. (a) Stiefel, E. I. Molybdenum. In Kirk Othmer Encyclopedia of Chemical Technology, 4th ed.; Wiley: New York, 1995; Vol. 16, p 940. (b) Braithwaite, E. R.; Haber, J. (Eds). Molybdenum: an outline of its chemistry and uses; Elsevier: Amsterdam, 1994.
35. (a) Schrock, R. R. "High Oxidation State Multiple Metal-Carbon Bonds" Chem. Rev. 2002, 102, 145-180. (b) Hoveyda, A. H.; Schrock, R. R."Catalytic Asymmetric Olefin Metathesis" Organic Synthesis HighlightsV, Schmalz, Wirth, Ed., Wiley-VCH, p 210-229.
36. (a) Kiely, A. F.; Jernelius, J. A.; Schrock, R. R.; Hoveyda, A. H. J.
Am. Chem. Soc . 2002, 124, 2868–2869. (b) Weatherhead, G. S.;
Cortez, A. G.; Schrock, R. R. ; Hoveyda, A. H. Proc. Natl. Acad.Sci.
2004, 101, 5805–5809.
37. O. Belda; N. F. Kaiser; U. Bremberg; M. Larhed; A. Hallberg; C. Moberg J. Org. Chem. 2000, 65, 5868-5870.
38. (a) Ramesha, A. R.; Chandrasekaran, S. Synth. Commun. 1992, 22, 3277. (b) Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem. 1994, 59, 1354. 39. Prabhu, K. R.; Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem. 1995, 60, 7142.
40. Prabhu, K. R.; Sivanand, P. S.; Chandrasekaran, S. Angew. Chem. Int. Engl. 2000, 39, 4316-4319.
41. W. Adam; R. M. Bargon Chem. Commun. 2001, 1910-1911.
42. W. Adam; R. M. Bargon, S. G. Bosio; W. A. Schenk; D. Stalke J. Org. Chem. 2002, 67, 7037.
43. (a) Jarowicki, K.; Kocienski, P. Org. Synth. 1997, 454. (b) Dumeunier, R.; Marko, I. E. Tetrahedron Lett. 2004, 45, 825. (c) Le Roux, C.; Dubac, J. Synlett 2002, 2, 181.
44. Chen,C-T; Kuo, J-H; V. D. Pawar; Y. S. Munot; Weng, S-S; Ku, C-H; Liu, C-Y J. Org. Chem. 2005, 70, 1188.
45. (a) Green, T. W.; Wuts, P. G. Protective Group in Organic Synthesis; John Wiley & Sons: New York, 1999. (b) Kocienski, P. J. Protective Groups; Enders, R., Noyori, R., Trost, B. M., Eds.; Thieme: Stuttgart, 1994; Chapter 4.
46. (a) Kocieňski, P. J. Protecting Groups; Georg Thieme Verlag: New York, 1994. (b) Meskens, F. A. J. Synthesis 1981, 501-502. (c) Schelhaas, M.; Waldmann, H. Angew. Chem. Int. Ed. Engl. 1996, 35, 2056-2083. (d) T. K. Lindhorst Essentials of carbohydrate Chemistry and Biochemistry. WILEY-VCH.
47. Seebach, D.; Imwinkelried, R.; Weber, T. Modern Synthetic Methods 1986; Scheffold, R., Ed.; Springer-Verlag: 1986; Vol. 4, pp 125-259.
48. Cameron, A. F. B.; Hunt, J. S.; Oughton, J. F.; Wilkinson, P. A.; Wilson, B. M. J. Chem. Soc. 1953, 3864.
49. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357.
50. Masaaki, K.; Wataru, H. J. Org. Chem. 2003, 68, 3413-3415.
51. Gemal, A. L.; Luche, J.-L. J. Org. Chem. 1979, 44, 4187.
52. Anderson, S. H.; Uh, H.-S. Synth. Commun. 1973, 3, 125.
53. Wenkert, E., Goodwin, T. E. Synth. Commun. 1977, 7, 409.
54. Zajac, W. W.; Byrne, K. J. J. Org. Chem. 1970, 35, 3375.
55. (a) Karimi, B.; Seradj, H.; Ebrahimian, G. R. Synlett 1999, 456-1458.
(b) Karimi, B.; Ebrahimian, G. R.; Seradj, H. Org. Lett. 1999, 1, 1737-1739.
56. Bornstein, J.; Bedell, S. F.; Drummond, P. E.; Kopsloski, C. L. J. Am. Chem. Soc. 1956, 78, 83.
57. Patwardhan, S. A.; Dev, S. Synthesis 1974, 348.
58. (a) Karimi, B.; Ashtiani, A. M. Chem. Lett. 1999, 1199. (b) B. Karimi; G. R. Ebrahimian; H. Seradj Org. Lett., 1999, 11, 1737-1739.
59. (a) Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synlett 1999, 321. (b) Jin, T.-S.; Zhang, S.-L.; Wang, X.-F.; Guo, J.-J.; Li, T.-S. J. Chem. Res. 2001, 289-291.
60. (a) Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synlett 1999, 321. (b)Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synth. Commun. 1999, 29, 2255.
61. Rangam Gopinath; Sk. Jiaul Haque; Bhisma K. Patel J. Org. Chem. 2002, 67, 5842-5845
62. M. L. Nicholas; C. O. Matthew; D. A. Freiberg; B. A. Nattier; R. C. Smith; R. S. Mohan J. Org. Chem. 2002, 67, 5202-5207
63. Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H. Synlett 1996, 839-841.
64. (a) Daignault, R. A.; Eliel, E. L. Organic Syntheses; Wiley: New York, 1973; Collect. Vol. V, p 303. (b) Caserio, F. F.; Roberts, J. D. J. Am. Chem. Soc. 1958, 80, 5837. (c) Fieser, L. F.; Stevenson, R. J. Am. Chem. Soc. 1954, 76, 1728. (d) Howard, E. G.; Lindsey, R. V. J. Am. Chem. Soc. 1960, 82, 158. (e) Dauben, W. G.; Gerdes, J. M.; Look, G. C. J. Org. Chem. 1986, 51, 4964. (f) Ethylene glycol/TMSCl: Chan, T. H.; Brook, M. A.; Chaly, T. Synthesis 1983, 203. (g) AlPO4: Bautista, F. M.; Campelo, J. M.; Garcia, A.; Leon, J.; Luna, D.; Marinas, J. M. J. Prakt. Chem. 1994, 336, 620. (h) CdI2: Laskar, D. D.; Prajapati, D.; Sandhu, J. S. Chem. Lett. 1999, 1283. (i) Rh(III) triphos moieties: Ott, J.; Tombo, G. M. R.; Schmid, B.; Venanzi, L. M.; Wang, G.; Ward, T. R. Tetrahedron Lett. 1989, 30, 6151. (j) BF3.Et2O: Torok, D. S.; Figueroa, J. J.; Scott, W. J. J. Org. Chem. 1993, 58, 7274. (K) Ti(OR)4/TiCl4: Mahrwald, R. J. Prakt. Chem. 1994, 336, 361. (l) Envirocats: Beregszaszi, T.; olnar, A. Synth. Commun. 1997, 27, 3705. (m) Pt-Mo/ZrO2: Reddy, B. M.; Reddy, V. R.; Giridhar, D. Synth. Commun. 2001, 31, 1819. (n) Microwave irradiation: Perio, B.; Dozias, M.-J.; Jacquault, P.; Hamelin, J. Tetrahedron Lett. 1997, 38, 7867. (o) TiCl4/Et3N: lerici, A.; Pastori, N.; Porta, O. Tetrahedron 1998, 54, 15679. (p) Thurkauf, A.; Jacobson, A. E.; Rice, K. C. Synthesis 1988, 233.
65. T. K. Lindhorst Essential of Carbohydrate Chemistry and Biochemistry, VILEY-VCH, p 59.
66. L, Jiang, T.- H. Chan Tetrahedron Lett. 1998, 39, 355.
67. (a)Wang, C.-C.; Luo, S.-Y.; Shie, C.-R.; Hung, S.-C. Org. Lett. 2002, 4, 847-849 (b) Shie, C.-R.; Tzeng, Z.-H.; Kulkarni, S. S.; Uang, B.-J.; Hsu, C.-Y.; Hung, S.-C. Angew. Chem. Int. Ed. 2005, 44, 1665-1668.
68. Paulsen, H. Chem. Soc. Rev. 1972, 13, 15.
69. Durette, P. L.; Shen, T.Y. Carbohydr. Res. 1980, 83,178.
70. (a) Saito, S.; Tsuchiya, S. Biochem, 1984, 222, 829. (b) Saito, S.; Tsuchiya, S. Chem. Pharm. Bull. 1985, 33,503. (c) Bock, K.; Defaye, J.; Driguez, H. European Journal of Biochemistry 1983, 131, 595-600.
71. (a) Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313. (b) Lonn, H. Carbohydr. Res. 1989, 135, 105. (c) Fugedi, P.; Garegg, P. J. Carbohydr. Res. 1986, 149, C9. (d) Veeneman, G. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 275.
72. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.
73. Wang, C.-C.; Luo, S.-Y.; Shie, C.-R.; Hung, S.-C. Org. Lett. 2001, 4, 847.
74. Boulineau, F. P.; Wei, A. Carbohydr. Res. 2001, 334, 271.
75. (a) Jiang, L.; Chan, T.-H. Tetrahedron Lett. 1998, 39, 355. (b) Hernández-Torres, J. M.; Achkar, J.; Wei, A. J. Org. Chem. 2004, 69, 7206.
76. Wong, C.-H.; Ye, X.-S.; Zhang, Z. J. Am. Chem. Soc. 1998, 120, 7137.
77. (a) D’Andrea, F.; Catelani, G..; Mariani, M.; Vecchi, B. Tetrahedron Lett. 2001, 42, 1139. (b) Copeland, C.; Stick, R. V. Aust. J. Chem. 1982, 35, 1709.
78. (a) Paulsen, H. Chem. Soc. Rev. 1972, 13, 15. (b) Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2006, 106, 160.
79. Durette, P. L.; Shen, T. Y. Carbohydr. Res. 1980, 83, 178.
80. Saito, S.; X. Tsuchiya Biochem. 1984, 222, 829.
81. Saito, S.; X. Tsuchiya Chem. Pharm. Bull. 1985, 33, 503.
82. Monod, J. Angew. Chemie Int. Ed. Engl. 1959, 71, 658.
83. Rho, D.; Desrochers, M.; Jurasek, L.; Driguez, H.; Defaye, J. J. Bacteriol. 1982, 149, 47.
84. Bock, K.; Defaye, J.; Driguez, H.; Bar-Guilloux, E. Eur. J. Biochem. 1983, 131, 595.
85. Rafestin, M. E.; Obrenovitch, A.; Oblin, A.; Monsigny, M. FEBS Lett. 1974, 40, 62.
86. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.;Baasov,T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.
87. Z. Zhang; I. R. Ollmann; X-S, Ye; R. Wischnat; T. Baasov; Wong, C-H J. Am. Chem. Soc. 1999, 121, 734.
88. (a) Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett.
1990, 31, 4313. (b) Lonn, H. Carbohydr. Res. 1989, 135, 105. (c)
Fugedi, P., Garegg, P. J. Carbohydr. Res. 1986, 149, C9. (d) Veeneman,
G. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 275. (e) Burkart, M.
D.; Zhang, Z.; Hung, S.-C.; Wong, C.-H. J. Am. Chem. Soc. 1997, 119,
11743. (11) Wong, C. H., Ye, X.; Zhang, Z. J. Am. Chem. Soc. 1998,
120, 7137.
89. (a) Lemieux, R. U. Can. J. Chem. 1951, 59, 314. (b) Müller, D.; Vic,
G., Critchley; Crout, P. D. H. G.; Lea, N.; Roberts, L.; Lord, J. M. J.
Chem. Soc., Perkin Trans. 1 1998, 2287.
90. Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F. J. Am. Chem. Soc. 1997, 119, 449.
91. Viso, A.; Poopeikoy, N.; Castillón, S. Tetrahedron Lett. 2000, 41, 407.
92. Malet, C.; Viladot, J. L.; Ochoa, A.; Gállego, B.; Brosa, C. ; Planas, A. Carbohydr. Res. 1995, 274, 285.
93. Mong, T. K.-K.; Huang, C.-Y.; Wong, C.-H. J. Org. Chem. 2003, 68, 2135.
94. Mahadevan, A.; Li, C.; Fuchs, P. L. Synth. Comm. 1994, 24, 21, 3009.
95. Rajanikanth, B., Seshadri, R. Tetrahedron Lett. 1987, 28, 2995.
96. Yanase, M.; Funabashi, M. J. Carbohydr. Chem. 2000, 19, 1, 53.
97. (a) Geurtsen, R.; Holmes, D. S.; Boons, G.-J. J. Org. Chem. 1997, 62, 8145. (b) Pozsgay, V.; Jennings, H. J. J. Org. Chem. 1988, 53, 4042.
98. Shimadate, T.; Chiba, S.; Inouye, K.; Iino, T.; Hosoyama, Y. Bull. Chem. Soc. Jpn. 1982, 55, 3552.
99. Contour, M. O.; Defaye, J.; Iittle, M.; Wong, E. Carbohydr. Res. 1989, 193,283.
100. (a) For ZnCl2: D., Deulofeu J. Org. Chem. 1952, 17, p 1097-1100 (b) for FeCl3: D., Falguni; G. Acta Chem. Scand., 1989, 43, 5, p 471-475. (c) for SnCl4 : Pascu, Chem. Ber., 1928, 61, 137, p 143. (d) for BF3.Et2O : Csueroes et al. Acta Chim. Acad. Sci. 1959, 19, 181-188.
101. Shimadate, T.; Chiba, S.; Inouye, K.; Iino, T.; Hosoyama, Y. Bull. Chem. Soc. Jpn. 1982, 55, 3552.
102. (a) Driguez, H. In Topics in Current Chemistry: Glycoscience; Driguez, H., Thiem, J., Eds.; Springer: Berlin, 1997; Vol. 187, p 85. (b) Sulzenbacher, G.; Driguez, H.; Henrissat, B.; Schulein, M.; Davies, G. J. Biochemistry 1996, 35, 15280.
103. Haines, A. H., ed. (1988) Methods for the Oxidation of Organic Compounds: Alcohols, Alcohol Derivatives, Alkyl Halides (Academic, London). 104. Matsumoto, M. & Watanabe, N. (1984) J. Org. Chem. 49, 3435–3436.
105. Velusamy, S.; Punniyamurthy, T. Org. Lett. 2004, 6, 217–219.
106. (a) Muldoon, J.; Brown, S. N. Org. Lett. 2002, 4, 1043–1045.
(b) Iwahama, T.; Yoshino, Y.; Keitoku, T., Sakaguchi,S.; Ishii, Y. J. Org.Chem 2002, 65, 6502–6507.
107. Miyata, A., Murakami, M., Irie, R.; Katsuki, T. Tetrahedron Lett. 2001,42, 7067–7070.
108. Hanyu, A.; Takezawa, E.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 1998, 39, 5557–5560.
109. Marko´, I. E.; Giles, P. R., Tsukazaki, M.; Chelle´ -Regnaut, I.; Gautier, A.; Brown, S. M.; Urch; C. J. J. Org. Chem. 1999, 4, 2433–2439.
110. (a) Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A. Chem. Commun. 1999, 111, 1591–1592. (b) Semmelhack, M. F.; Schmid, C. R.; Corte´s, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374–3376.
112. Peterson, K. P.; Larock, R. C. J. Org. Chem 1998, 63, 3185–3189.
113. Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750–6755.
114. Kaneda, K.; Fujii, M.; Morioka, K. J. Org. Chem. 1996, 61, 4502–4503.
115. Murahashi, S.-I.; Naota, T.; Hirai, N. J. Org. Chem. 1993, 58, 7318–7319.
116. Lorber, C. Y.; Smidt, S. P.; Osborn, J. A. Eur. J. Inorg. Chem. 2000, 4, 655–658.
117. David R. Jensen; Jacob S. Pugsley; M. S. Sigman J. Am. Chem. Soc. 2001, 123, 7475.
118. E.M. Ferreira; B. M. Stoltz J. Am. Chem. Soc. 2001, 123, 7725.
119. Masutani, K.; Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2000, 41, 5119–5123.
120. Sun, W.; Wang, H.; Xia, C.; Li, J.; Zhao, P. Angew. Chem. Int. Ed. 2003, 42, 1042–1044.
121. (a) The Merck Index, 11th ed.; Budavari, S., Ed., Merck & Co.:
Rahway, NJ, 1989, p 898. (b) Nakamura, K.; Tsuji, K.; Kiyoshi, K.;
Nobukiyo, M.; Matsuo, M. Chem. Pharm. Bull. 1993, 41, 2050. (c)
Hoefnagel, A. J.; Peters, J. A.; van Bekkum, H. Recl. Trav. Chim.
Pays-Bas 1988, 107, 242. (d) Hoefnagel, A. J.; Peters, J. A.; van
Bekkum, H. Recl. Trav. Chim. Pays-Bas 1996, 115, 353. (e) Miersch,
O.; Kramell, R.; Parthier, B.; Wastemack, C. Phytochemistry 1999, 50,
353. (f) Yoshioka, M.; Yoshida, A.; Ichihashi, Y.; Saito, H. Chem.
Pharm. Bull. 1985, 33, 2145. (g) Khalaj, A.; Shadnia, H.; Sharifzadeh,
M. Pharm. Pharmacol. Commun. 1998, 4, 373.
122. (a) Chadha, A.; Baskar, B. Tetrahedron : Asymmetry 2002, 13, 1461. (b) Queiroz, n.; do Nascimento, G. M. Tetrahedron Lett. 2002, 43, 5225. (c) Adam, W.; Lazarus, M.; Boss, B.; Saha-Moller, C. R.; Humpf, H.-U.; Schreier, P.; J. Org. Chem. 1997, 62, 7841. (d) Palomo, J. M.; Ferna´ndez -Lorente, G.; Ru´a, M. L.; Guisa´n, J. M.; Ferna´ndez-Lafuente, R. Tetrahedron : Asymmetry 2003, 14, 3679.
123. Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1090.
124. Huerta, F. F.; Laxmi, Y. R. S.; Backvall, J.-E. Org. Lett., 2000, 2, 1037.
125(a) Chen, Y. T.; Onaran, M. B.; Doss, C. J.; Seto, C. T. Bioorg.Med.Chem.Lett. 2001, 11, 1935–1938.60. (b) Nizi, E.; Koch, U.; Ponzi, S.; Matassa, V. G.; Gardelli, C. Bioorg. Med. Chem.
Lett. 2002, 12, 3325–3328.
126. (a) You, J.-S.; Yu, X.-Q.; Zhang, G.-L.; Xing, Q.-X.; Lan, J.-B.; Xie, R.-G. Chem. Commun. 2001, 1816 and references therein. (b) Kim, J.; Kim, S.-G.; Seong, H. R.; Ahn, K. H. J. Org. Chem. 2005, 70, 7227 and references therein. (c) Fang, T.; Du, D.-M.; Lu, S.-F.; Xu, J. Org. Lett. 2005, 7, 2081. (d) Moberg, C. Angew. Chem. Int. Ed. 1998, 37, 248. (e) McMenimen, K. A.; Hamiltin, D. G. J. Am. Chem. Soc. 2001, 123, 6453.
127. (a) Andreetti, G. D.; Bohmer, V.; Jordon, J. G.; Tabatabai, M.; Ugozzoli, F.; Vogt, W.; Wolff, A. J. Org. Chem. 1993, 58, 4023. (b) Pickard, S. T.; Pirkel, W. H.; Tabatabai, M.; Vogt, W.; Bohmer, V. Chirality 1993, 5, 310. (c) Huan, G.; Jacobson, A. J.; Day, V. W. Angew. Chem. Int. Ed. Engl. 1991, 30, 422.
128. For biological systems exhibiting C4-symmetry, see: (a) Orlova, E. V.; Rahman, M. A.; Gowen, B.; Volynski, K. E.; Ashton, A. C.; Manser, C.; van Heel, M.; Ushkaryov, Y. A. Nature Struc. Biol. 2000, 7, 48. (b) Collins, R. F.; Frye, S. A.; Kitmitto, A.; Ford, R. C.; Tonjum, T.; Derrick, J. P. J. Biol. Chem. 2004, 279, 39750.
129. (a) Bonadies, J. A.; Butler, W. M.; Pecoraro, V.; Carrano, C. J. Inorg. Chem. 1987, 26, 1218. (b) Nakajima, K.; kojima, M.; Toriumi, K.; Saito, K.; Fujita, J. Bull. Chem. Soc. Jpn. 1989, 62, 760.
130. (a) Schmidt, H.; Bashirpoor, M.; Rehder, D. J. Chem. Soc., Dalton Trans. 1996, 3865. (b) Zamian, J. R.; Dockal, E. R.; Castellano, G.; Oliva, G. Polyhedron 1995, 14, 2411.
131“Macrocyclic chemistry: aspects of organic and inorganic supramolecular chemistry” B. Dietrich; P. Viout; J.-M. Lehn; W. E. Douglas, New York : VCH, 1993.
132. Kocovsky, P.; Vyskocil, S.; Smrcina, M. Chem. Rev 2003, 103, 8, 3213-3246.