研究生: |
趙咨評 Chao, Tzu-Ping |
---|---|
論文名稱: |
沸石晶種自組裝合成中孔洞奈米粒子與垂直中孔道薄膜之結構鑑定和應用 Direct Assembly of Zeolite Seeds into Mesoporous Nanoparticles and Vertical Mesochannel Thin Films: Syntheses, Characterizations and Applications |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 中孔洞沸石奈米粒子 、垂直於基材中孔洞沸石薄膜材料 |
英文關鍵詞: | mesoporous zeolitic nanoparticles, vertically-aligned mesoporous zeolitic thin films |
DOI URL: | https://doi.org/10.6345/NTNU202203931 |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究混合陽離子型及陰離子型界面活性劑於水中,並以正癸烷所為微胞擴孔劑、與沸石晶種自組裝成中孔洞奈米粒子。此類奈米粒子,不僅具有高表積(700-1000 m2/g)、高孔體積(1-1.5 mL/g)及規則性中孔洞(3-8 nm)、微孔洞(~0.7 nm)之分佈,並在適時基材引入之下,於界面上可生長出公分級的中孔洞沸石薄膜材料。經由各類實驗參數之調控,薄膜材料可具有高規則排列之六角型中孔洞,並以電子顯微鏡與低掠角X光散射來分析此薄膜之厚度及中孔洞形貌、結構。垂直於基材之沸石中孔洞薄膜材料,其熱穩定性及高孔洞表面積不僅可用來負載各類觸媒並用於催化反應,其限制空間及垂直方向性亦可用來生長具方向性奈米材料,提供一個生長大面積低維度半導體之低溫溶液法策略。
Here we introduce self-assembly of tri-component micelle system, including cationic, anionic surfactants and neutral decane to grow pore-expanded mesoporous zeolitic nanoparticles with high surface areas (700-1000 m2/g), large pore volume (1-1.5 mL/g), uniform mesopore (3-8 nm) and micropore sizes (~0.7 nm). By introducing rigid substrates, vertically-aligned mesoporous zeolitic thin films were grown in centimeter size. These thin films are composed of highly-ordered hexagonal mesopores which can be examined by electron microscopy and scattering techniques. Additionally, these thin films are partially crystalline with good thermal stabilities and high surface area to load nano-sized catalysts as well as to grow oriented 1D nanowires, indicative of a new strategy for low temperature fabrications of large-area low-dimensional semiconductors.
(1) Tah, B.; Pal, P.; Mahato, M.; Talapatra, G. B. J. Phys. Chem. B. 2011, 115, 8493.
(2) Ma, C.; Han, L.; Jiang, Z.; Huang, Z.; Feng, J.; Yao, Y.; Che, S. Chem. Mater. 2011, 23, 3583.
(3) Wu, C.-W.; Ohsuna, T.; Kuwabara, M.; Kuroda, K. J. Am. Chem. Soc. 2006, 128, 4544.
(4) Kao, K.-C.; Lin, C.-H.; Chen, T.-Y.; Liu, Y.-H.; Mou, C.-Y. J. Am. Chem. Soc. 2015, 137, 3779.
(5) Yi, Z.; Dumée, L. F.; Garvey, C. J.; Feng, C.; She, F.; Rookes, J. E.; Mudie, S.; Cahill, D. M.; Kong, L. Langmuir 2015, 31, 8478.
(6) Kao, K.-C.; Mou, C.-Y. Microporous Mesoporous Mater. 2013, 169, 7.
(7) Kwok, D. Y.; Neumann, A. W. Adv. Colloid Interface Sci. 1999, 81, 167.
(8) Yeh, Y.-Q.; Lin, H.-P.; Tang, C.-Y.; Mou, C.-Y. J. Colloid Interface Sci. 2011, 362, 354.
(9) Zhu, J.; Zhu, Y.; Zhu, L.; Rigutto, M.; van der Made, A.; Yang, C.; Pan, S.; Wang, L.; Zhu, L.; Jin, Y.; Sun, Q.; Wu, Q.; Meng, X.; Zhang, D.; Han, Y.; Li, J.; Chu, Y.; Zheng, A.; Qiu, S.; Zheng, X.; Xiao, F.-S. J. Am. Chem. Soc. 2014, 136, 2503.
(10) Mondal, M. H.; Malik, S.; Roy, A.; Saha, R.; Saha, B. RSC Advances 2015, 5, 92707.
(11) Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Chem. Soc. Rev. 2013, 42, 3862.
(12) Matsumoto, A.; Chen, H.; Tsutsumi, K.; Grün, M.; Unger, K. Microporous Mesoporous Mater. 1999, 32, 55.
(13) Hollamby, M. J.; Borisova, D.; Brown, P.; Eastoe, J.; Grillo, I.; Shchukin, D. Langmuir 2012, 28, 4425.
(14) Anderson, M. T.; Martin, J. E.; Odinek, J. G.; Newcomer, P. P. Chem. Mater. 1998, 10, 311.
(15) Xia, Y.; Mokaya, R. J. Mater. Chem. 2004, 14, 3427.
(16) Perez-Ramirez, J.; Christensen, C. H.; Egeblad, K.; Christensen, C. H.; Groen, J. C. Chem. Soc. Rev. 2008, 37, 2530.
(17) Swaddle, T. W.; Salerno, J.; Tregloan, P. A. Chem. Soc. Rev. 1994, 23, 319.
(18) Cundy, C. S.; Cox, P. A. Microporous Mesoporous Mater. 2005, 82, 1.
(19) Azhati, A.; Xie, S.; Wang, W.; Elzatahry, A. A.; Yan, Y.; Zhou, J.; Al-Dhayan, D.; Zhang, Y.; Tang, Y.; Zhao, D. Chem. Mater. 2016, 28, 4859.
(20) Urbanova, V.; Walcarius, A. Z. Anorg. Allg. Chem. 2014, 640, 537.
(21) Hara, M.; Nagano, S.; Seki, T. J. Am. Chem. Soc. 2010, 132, 13654.
(22) Shan, F.; Lu, X.; Zhang, Q.; Wu, J.; Wang, Y.; Bian, F.; Lu, Q.; Fei, Z.; Dyson, P. J. J. Am. Chem. Soc. 2012, 134, 20238.
(23) Teng, Z.; Zheng, G.; Dou, Y.; Li, W.; Mou, C.-Y.; Zhang, X.; Asiri, A. M.; Zhao, D. Angew. Chem. Int. Ed. 2012, 51, 2173.
(24) Manne, S.; Gaub, H. E. Science 1995, 270, 1480.
(25) Stein, A.; Rudisill, S. G.; Petkovich, N. D. Chem. Mater. 2014, 26, 259.
(26) Shih, P.-C.; Lin, H.-P.; Mou, C.-Y. In Stud. Surf. Sci. Catal.; Sang-Eon Park, R. R. W.-S. A. C. W. L., Jong-San, C., Eds.; Elsevier: 2003; 146, 557.
(27) Oelschlaeger, C.; Suwita, P.; Willenbacher, N. Langmuir 2010, 26, 7045.
(28) Yada, M.; Machida, M.; Kijima, T. Chem. Commun. 1996, 769.
(29) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663.
(30) Ikuno, T.; Chaikittisilp, W.; Liu, Z.; Iida, T.; Yanaba, Y.; Yoshikawa, T.; Kohara, S.; Wakihara, T.; Okubo, T. J. Am. Chem. Soc. 2015, 137, 14533.
(31) Alessi, A.; Agnello, S.; Buscarino, G.; Gelardi, F. M. J. Raman. Spectrosc. 2013, 44, 810.
(32) Asanithi, P.; Chaiyakun, S.; Limsuwan, P. J. Nanomater. 2012, 2012, 8.
(33) Mejía, M. I.; Restrepo, G.; Marín, J. M.; Sanjines, R.; Pulgarín, C.; Mielczarski, E.; Mielczarski, J.; Kiwi, J. Acs Appl. Mater. Inter, 2010, 2, 230.
(34) Noor, S. M. J. Phys.: Condens. Matter. 2014, 26, 423202.