簡易檢索 / 詳目顯示

研究生: 邱顯博
Hsien-Po Chiu
論文名稱: 國二、國三學生的擴散作用概念與概念改變之研究
Investigating the eighth and ninth grade students' conception and conceptual change of diffusion
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 250
中文關鍵詞: 擴散迷思概念概念改變突現預測-觀察-解釋角色扮演溶液因果
英文關鍵詞: diffusion, misconception, conceptual change, emergence, predict-observe-explain, role-playing, solution, causality
論文種類: 學術論文
相關次數: 點閱:223下載:65
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 擴散作用概念雖然常被視為是簡單的科學概念,然而Marek(1986, 1988, 1991)在一系列對擴散作用概念的研究中卻指出,能正確解釋擴散作用的學生比例是極低的,而且要使學生發生概念改變亦是非常困難的。本研究的主要目的,便是在探討已經學習過粒子概念的國二及國三學生所持有的擴散作用想法,除了以Chi(2000)所主張之突現與因果解釋基模為理論基礎來進行研究外,還設計及分組實施文本教學、個人解釋、小組討論、角色扮演四種教學活動,企圖使學生發生概念改變,並以Tyson, Venville, Harrison, & Treagust(1997)所主張之動機情意、本體論與認識論三種研究面向,來檢視學生概念改變的情形。研究結果摘要如下:
    1.學生持有液態物質粒子迷思概念的種類與比例,高於固態與氣態,而 且對於液態物質的粒子觀,學生發生了日常經驗與教材知識間之認知衝突。
    2.雖然在科學概念中對於液態純物質與混合物的粒子觀均相同,但許多學生的液態物質粒子觀卻是不一致、甚至隨問題情境而變的。
    3.本研究181名研究對象中,在教學前僅4.4%持有正確之擴散作用概念,而在教學後有25.3%持有正確之擴散作用概念。
    4.學生對於擴散作用的屬性具有物理及化學反應兩種不同屬性的看法,而在兩種屬性下都包含了雙動、單動、被動與目的論四種主要心智模式,據此再細分為廿三種子類型,來對應於四十四種圖形與命題之雙重表徵類別,分類結果較Chi(2000)所主張之兩種解釋基模為多,且具Vosniadou (1994)架構理論上與Chi(2000)本體分類論在過程類別性質上的定位。而在教學時,心智模式改變多為兩模式轉變,涉及三模式轉變的很少。
    5.由晤談及個人解釋、小組討論組教學成效得知,有少數學生並不一定如Chi(2000)、Perkins & Grozter(2000)所主張的缺乏突現解釋基模,然會因為類比於粒子之具體操作物的性質及使用Aristotle力學觀的影響,而選擇不去使用。
    6.在四種教學之成效比較上,文本教學雖在其他實驗組中可能有實施之必要性,但若單以此實施幾乎沒有教學成效;個人解釋組與小組討論組教學雖能達到概念改變的顯著差異、減少對液態及氣態粒子迷思概念,卻無法引起學生之學習興趣,且小組討論對去除目的論想法沒有幫助;而角色扮演組教學可引起學生學習興趣,能達到概念改變顯著差異、減少對液態、氣態迷思概念、並正確解釋布朗運動的人數比例為四組最高,故四教學組中以角色扮演組為較佳。
    7.與粒子動力論典範改變過程中之科學家Newton與Bernoulli相比較,持有不同心智模式的學生,與科學家間的相似度與差異度會有所不同。

    Although the concept of diffusion is usually classified as the simple concept in science, Marek(1986, 1988, 1991) argued that the ratio of students who could explain diffusion correctly is low and the conceptual change of that is difficult. Based on the theory of emergent and causal schemata proposed by Chi(2000), the purpose of this research is to investigate the understanding of diffusion possessed by eighth and ninth grade student who have learned the concept of particles. In addition, four kinds of instructional methods including text-teaching, POE-personal explanation, POE-group discussion, role-playing, were given respectively in order to make conceptual change happen. The students’ performance on conceptual change was examined via three perspectives: motivation and emotion, ontology, and epistemology, proposed by Tyson, Venville, Harrison, & Treagust (1997). The results are summarized as the following:
    1. The misconceptions of particle of substance in liquid state are more in variety and ratio than which in solid or in gaseous state. In addition, cognition conflict for the conception of particle of liquid-state substance happens between daily experience and textual knowledge in textbook.
    2. Although the particle view of pure substance and mixture in liquid state are consistent in science, they are not considered to be consistent for the students. And many students change their view of that even when different contexts of problem with the same substance are given.
    3. Before instruction, only 4.4% of 181 students could explain diffusion correctly. After instruction, 25.3% students could explain it correctly.
    4. Students view the property of diffusion as either the physical reaction or the chemical reaction. There are four kinds of mental models for each kind of property, and 23 submodels were found, corresponding to 44 kinds of pictoral and propostional dual representations. These four mental models are double-movable, single-movable, passive double-movable, and teleological models, each one of those has anchored position according to Vosniadou’s framework theory and Chi’s theory of ontological category. When conceptual change happens in the instruction, a lot of patterns of two-model changes are found frequently.
    5. According to the interviews with the students and the instructional results of POE-personal explanation and POE-group discussion, a few students with emergent schemata did not choose to use them because of possessing the similar view of Aristotle about the dynamics of objects and the interference of properties of concrete operator analogied to the particle, and this finding violates the arguments proposed by Chi(2000) and Perkins & Grotzer(2000).
    6. Comparing the performances of four different kinds of instruction in this study, role-playing instruction is the best of all. Because it attains to the significant difference of conceptual change, minimizes the misconceptions of substance in the liquid state and in the solid state, motivates students’ interest in learning, and makes the highest ratio of students to explain Brownian movement correctly. The difference between role-playing and POE-either personal explanation or group discussion is that POE couldn’t make students interested in learning. Text-teaching is the useless one if performed individually rather than combined with other kinds of instruction.
    7. Comparing with Newton and Bernoulli, the extent of similarity and difference between scientists and students with different mental models is various.

    第壹章 緒 論..............................................1 第一節 研究動機..........................................1 第二節 研究目的與問題....................................2 第三節 研究限制與範圍....................................3 第四節 研究重要性........................................4 第貳章 文獻探討..............................................7 第一節 突現與突現解釋架構................................7 第二節 概念改變研究回顧.................................32 第三節 粒子相關迷思概念研究回顧.........................43 第四節 擴散相關迷思概念研究回顧.........................52 第五節 教學活動工具之背景理論...........................54 第六節 心智模式.........................................63 第七節 原子論與粒子動力論發展史.........................68 第參章 研究方法.............................................71 第一節 研究設計.........................................71 第二節 研究對象.........................................71 第三節 研究工具.........................................74 第四節 研究進行程序.....................................81 第五節 資料處理與分析...................................85 第肆章 研究結果與討論.......................................91 第一節 學生之粒子先有概念...............................91 第二節 學生的擴散作用心智模式..........................108 第三節 各組教學成效比較................................146 第四節 擴散作用概念改變的歷程..........................160 第五節 概念改變之機制與抗拒概念改變之原因..............190 第伍章 結論與建議..........................................197 第一節 結論............................................197 第二節 研究特色與建議..................................201 第三節 本研究對教學與學習意涵的啟示....................202 第四節 未來研究方向與問題..............................204 參考文獻....................................................205 中文部分................................................205 英文部分................................................206 附錄........................................................227 附錄一 粒子概念測驗上半部分試題內容及試題分析編號......227 附錄二 粒子概念測驗下半部分試題內容及試題分析編號......231 附錄三 工作單試題內容及試題分析編號(含情意動機量表)....234 附錄四 後測與延宕後測試題內容及試題分析編號............237 附錄五 擴散作用概念之心智模式量表......................240 附錄六 文本教學組教材..................................241 附錄七 個人解釋組教材..................................242 附錄八 小組討論組教材..................................244 附錄九 角色扮演組教材..................................246 附錄十 擴散作用心智模式參考表..........................248 附錄十一 如何記憶本研究中表徵及心智模式編碼與轉換......249

    一、中文部分:
    王承斌(民82):群性教學模式:角色扮演教學法之探討。中學工藝教育, 26(6), 2-8.
    王春源、郭重吉與黃麗曼(民81):物質變化相關概念診斷測驗工具之發展。科學教育, 241-264
    李郁文(民87):團體動力學:群體動力的理論與實務。台北:桂冠圖書公司。
    李武勳(民89):國中學生氣體壓力概念之教學成效探討。國立臺灣師範大學化學研究所碩士論文。未出版。
    邱美虹(民89):概念改變研究的省思與啟示。科學教育學刊, 8(1), 1-34.
    邱美虹(民91):以電腦動態表徵診斷台灣學生粒子概念。發表於民91年6月第一屆兩岸化學教育研討會,台北。
    邱旻昇(民88):從期望地位的觀點探討學生在科學小組討論中互動的平等性。國立臺灣師範大學科學教育研究所碩士論文。未出版。
    林德宏、肖玲(民84):科學認識思想史。南京:江蘇教育出版社。
    陳昭雄(民73):技術職業教育教學法。台北:三民書局。
    陳昭雄(民78):職業科目教學方法之理論與實務。台北:師大書苑。
    黃湘武、黃寶鈿(民75):學生空氣概念:粒子性質及動力平衡。七十四年度科學教育學術研討會論文彙編。
    劉元生(民83):實驗教學對於國中學生溶液概念改變的影響。國立臺灣師範大學化學研究所碩士論文。未出版。
    二、英文部分:
    Abraham, M. R., Grzybowski, E. B., Renner, J. W., & Mark, E. A. (1992). Understandings and misunderstandings of eighth graders if five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.
    Abraham, M. R., Williamson, V. M., & Westbrook, S. L. (1994). A cross-age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31(2), 147-165.
    Adami, C. (1998). Introduction to Artificial Life. New York: Springer-Verlag.
    Aguis, J. (1993). Sound and musical instruments. Investigating, 9(4), 21-22.
    Anderson, P. W. (1972). More is different: broken symmetry and the nature of the hierarchical structure of science. Science, 177, 393-396.
    Anderson, S. (1986). The experimental gestalt of causation: A common core to pupils’ preconceptions in science. European Journal of Science Education, 8(2), 155-171.
    Argyris, C., Putnam, R., & Smith, D. M. (2000). Action Science. (夏林清Trans. 行動科學.). 台北市: 遠流出版公司. (Origin work published 1985)
    Arkin, R. C. (1998). Behavior-Based Robotics. Cambridge, MA: MIT Press.
    Au, T. K., Sidle, A. L., & Rollins, K. B. (1993). Developing an intuitive understanding of conservation and contamination: Invisible particles as a plausible mechanism. Developmental Psychology, 29, 286-299.
    Baas, N. A. (1994). Emergence, hierarchies, and hyperstructures. In C. G. Langton (Ed.), Artificial Life III (pp. 515-537). Redwood, CA: Addison-Wesley.
    Balgopal, P. R., & Vassil, T. V. (1983). Groups in Social Work - An Ecological Perspective. New York: Macmillan Publishing Co. Inc.
    Benson, D. L., & Wittrock, M. E. (1993). Students’ preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.
    Beveridge, M. (1985). The development of young children’s understanding of the process of evaporation. British Journal of Educational Psychology, 55, 84-90.
    Black, M. (1962). Models and metaphors. Ithaca. NY: Cornell University Press.
    Blanco, A., & Prieto, T. (1997). Pupils’ view on how stirring and temperature affect the dissolution of a solid in a liquid: A cross study(12 to 18). International Journal of Science Education, 19(3), 303-315.
    Boocock, S. (1972). Validity testing of an intergenetational game. Simulation & Games, 3, 29-40.
    Briggs, J., & Peat, F. D. (1989). Turbulent mirror: An illustrated guide to chaos theory and the science of wholeness. New York: Harper & Row.
    Broad, C. D. (1919). Mechanical explanation and its alternatives. Proceedings of the Aristotelian Society, 19, 86-124.
    Broad, C. D. (1925). The Mind and its Place in Nature. London: Kegan Paul, Trench, Trubner and Co.
    Brook, A., Briggs, H., & Driver, R. (1984). Aspects of secondary students’ understanding of particulate nature of matter. Leeds : Children’s Learning in Science Project, University of Leeds, Center for Studies in Science and Mathmatics Education.
    Brown, D. (1995). Concrete focusing and refocusing: A cross-domain perspective on conceptual change in mechanics and electricity. Annual Conference of the American Educational Research Association.
    Bunge, M. (1968). Conjunction, succession, determination and causation. International Journal of Theoretical Physics, 1, 299-315.
    Bunge, M. (1979). Causality and Modern Science. New York: Dover.
    Caramazza , A., McClosky , M., & Green , B. (1981). Naïve beliefs in “sophisticated” subjects: Misconceptions about trajectories of objects. Cognition, 9, 117-123.
    Caravita, S., & Hallden, O. (1994). Reframing the problem of conceptual change. Learning and Instruction, 4, 89-111.
    Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
    Carey, S. (1991). Knowledge acquisition-enrichment or conceptual change? In S. Carey & R. Gelman (Eds.), The epigenesist of mind: Essays on biology and cognition(pp. 252-292). Hillsdale, NJ: Erlbaum.
    Cariani, P. (1991). Emergence and artificial life. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial Life II (pp. 775-797). Redwood, CA: Addison-Wesley.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota Studies in the Philosophy of Science (pp. 129-186). Minneapolis, MN: University of Minnesota Press.
    Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In T. B. Ward, S. M. Smith, & J. Vaid (Eds.), Creativity thought: An investigation of conceptual structures and processes (pp. 209-234). Washington, DC: American Psychological Association.
    Chi, M. T. H. (2000). Misunderstanding emergent processes as causal. Annual Conference of American Educational Research Association.
    Chi, M. T. H. (in press). Understanding of complex, abstract, dynamic concepts. In encyclopedia of psychology, New York: Oxford University Press.
    Chi, M. T. H., & Slotta, J. D. (1993). The ontological coherence of intuitive physics. Cognition and Instruction, 10, 249-260.
    Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts, Learning and Instruction, 4, 27-43.
    Chiu, M. H., Chiu, M. L., & Ho, C. Y. (2002). Using dynamic representations to diagnose students’ mental models of characteristics of particles. Presented at Asia Pacific Symposium on Information and Communication Technology in Chemical Education, Research and Development 2002, Kuala Lumpur, Malaysia.
    Clark, A. (1989). Microcognition, Philosophy, Cognitive Science and Parallel Distributed Processing. Cambridge, MA: MIT Press.
    Cohen, E. G. (1994). Designing groupwork: Strategies for the heterogeneous classroom.(2nd ed.). New York: Teachers College Press.
    Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick, (Ed.), Knowing, Learning, and Instruction(pp. 453-494). Hillsdale, NJ: Erlbaum.
    Costa, M. (1994). Air activities for grade 6. Investigating, 10(2), 17-19.
    Craik, K. (1943). The Nature of Explanation. Cambridge, UK: Cambridge University Press.
    Damon, W., & Phelps, E. (1989). Critical distinctions among three approaches to peer education. International Journal of Educational Research, 13, 9-19.
    Damper, R. I. (2000). Editorial for the Special Issue on ‘Emergent properties of complex systems’: Emergence and levels of abstraction. International Journal of Systems Science, 31(7), 811-818.
    Dawkins, R. (1986). The Blind Watchmaker. Harlow, Essex: Longman
    Denbigh, K. G. (1975). The Inventive Universe. London: Hutchinson
    Dennett, D. C. (1991). Consciousness Explained. Boston: Little, Brown and Company.
    Dennett, D. C. (1995). Darwin’s Dangerous Idea: Evolution and the Meanings of Life. London: Penguin.
    Denzin, N. K. (1988). Triangulation. In J. P. Keeves (Ed.), Educational research, methodology and measurement: An international handbook(pp. 511-513). Sydney: Pergamon Press.
    diSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Putfall (Eds.), Constructivism in the computer age (pp. 49-70). Hillsdale, NJ: Erlbaum.
    diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 249-260.
    Driver, R. (1983). The Pupil as Scientist?. Milton Keynes: Open University Press.
    Driver, R. (1985). Beyond appearances: The conservation of matter under physical and chemical transformation. In R. Driver (Ed.), Children’s ideas in Science. Milton Keynes: Open University Press
    Driver, R. (1990). Constructivist approaches to science teaching. Presented at the seminar series “Constructivism in Education”. University of Georgia, Mathematics Education department.
    Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23, 5-12.
    Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science studies. Studies in Science Education, 5, 61-84.
    Driver, R., Guesne, E., & Tiberghien, A. (1985). Some features of children’s idea and their implications for teaching. In R. Driver, E. Guesne, & A. Tiberghien (Eds.). Children’s ideas in science (pp.193-201). Philadelphia: Open University Press.
    Duit, R. (1994). Conceptual change approaches in science education. Presented at the Symposium on Conceptual Change, University of Jena, Germany.
    Duit, R., Treagust, D. F., & Mansfield, H. (1996). Investigating student understanding as a prerequisite to improving teaching and learning in science and mathematics. In D. F. Treagust, R. Duit, & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics(pp. 17-31). New York: Teachers College Press.
    Eigen, M. (1992). Steps Towards Life. New York: Oxford University Press.
    Emmeche, C., Koppe, S., & Stjernfelt, F. (1997). Explaining emergence: Toward an ontology of levels. Journal for General Philosophy of Science, 28, 83-119.
    Fensham, P. (1994) Beginning to teach chemistry. In P. Fensham, R. Gunstone, & R. White (Eds.), The Content of Science: A Constructivist Approach to its Teaching and Learning(pp. 14-28). London: Falmer.
    Ferrari, M., & Chi, M. T. H. (1998). The nature of naïve explanations of nature selection. International Journal of Science Education, 20(10), 1231-1256.
    Feynman, R. P. (1999). Meaning of It All: Thoughts of a Citizen Scientist. (吳程遠 Trans. 這個不科學的年代.). 台北市: 天下遠見出版公司 (Origin work published 1963)
    Fisher, K. M. (1983). Amino acid translation: A misconception in biology. In H. Helm & J. D. Novak (Eds.), Proceeding of the International Seminar: Misconceptions in Science and Mathematics(pp. 316-322). Ithaca. NY: Cornell University Press.
    Franklin, S. (1995). Artificial Minds. Cambridge, MA: Bradford Books-MIT Press.
    Freksa, C., & Barkowsky, T. (1999). On the duality and on the integration of propositionsal and spatial representations. In G. Rickheit & C. Habel (Eds.), Mental Models in Discourse Processing and Reasoning(pp. 195-212). Amsterdam: Elsevier Science B. V.
    Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students' alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69-95.
    Gell-Mann, M. (1994). The Quark and the Jaguar: Adventures in the Simple and the Complex. London: Little, Brown and Company.
    Gentner, D. (1983). Structure mapping: A theoretical framework for analogy. Cognitive Science, 7, 155-170.
    Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming crowds: Mental models of electricity. In D. Gentner & A. L. Stevens (Eds.), Mental Models(pp. 99-129). Hillsdale, NJ: Erlbaum.
    Georgi, H. M. (1989). Effective quantum field theories. In P. Davies (Ed.), The New Physics (pp. 446-457). New York: Cambridge University Press.
    Gleick, J. (1991). Chaos: Making a new science. (林和 Trans. 混沌-不測風雲的背後.). 台北市: 天下遠見出版公司. (Origin work published 1987)
    Glenn, A. D., Gregg, D., & Tipple, B. (1982). Using role-play Activities to teach problem solving. Simulation & Games, 13, 199-209.
    Griffiths, A. K., & Preston, K. R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611-628.
    Guenter, F. H., & Gjaja, M. N. (1996). The perceptual magnet effect as an emergent property of neural map formation. Journal of the Acoustical Society of America, 100, 1111-1121.
    Gunstone, R. F. (1988). Learners in science education. In P. Fensham (Ed.), Development and dilemmas in science education. London: The Falmer Press.
    Gunstone, R. F. (1990). Children’s science: A decade of developments inconstructivist views of science teaching and learning. The Australian Science Teachers Journal, 36(4), 9-19.
    Gunstone, R. F. (1995). Constructivist learning and the teaching of science. In B. Hand & V. Prain (Eds.), Teaching and learning in science: The constructivist classroom. Sydney: Harcourt Brace.
    Hand, B., Treagust, D. F., & Vance, K. (1997). Student perceptions of the social constructivist classroom. Science Education, 81, 561-575.
    Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509-534.
    Hawkins, J. A., & Gell-Mann, M. (Eds.) (1992). The Evolution of Human Languages. Reading, MA: Addison-Wesley.
    Hennessey, M. G. (1991). Analysis of conceptual change and status change in sixth-graders’ concepts of force and motion. Doctoral Dissertation. University of Wisconsin, Madison.
    Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743.
    Hildebrandt, B., Moratz, R., Rickheit, G., & Sagerer, G. (1999). Cognitive modeling of vision and speech understanding. In G. Rickheit & C. Habel (Eds.), Mental Models in Discourse Processing and Reasoning(pp. 213-236). Amsterdam: Elsevier Science B. V.
    Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective abilities. Proceedings of the National Academy of Sciences, USA, 79, 2554-2558.
    Hudson, J. (1992). The History of Chemistry. New York: Chapman & Hall.
    Johnson, J. H. (1988). Games and simulation. In W. H. Kemp & A. E. Schweller (Eds.), Instructional strategies for technology education(pp. 143-165). CA: Mission Hills.
    Johnson, P. (1998). Progression in children’s understanding of a ‘basic’ particle theory : A longitudinal study. International Journal of Science Education, 20(4), 393-412.
    Johnson-Laird, P. N. (1983). Mental models. Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge, UK: Cambridge University Press.
    Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of Cognitive Science(pp. 467-499). Cambridge, MA: MIT Press.
    Johnson-Laird, P. N. (1995). Mental models, deductive reasoning, and the brain. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences(pp. 999-1008). Cambridge, MA: MIT Press.
    Kauffman, S. A. (1984). Emergent properties of random complex automata. Physica D, 10, 145-156.
    Kauffman, S. A. (1987). Origins of Order: Self-Organization and Selection in Evolution. New York: Oxford University Press.
    Keil, F. (1979). Concepts, kinds and cognitive development. Cambridge, MA: MIT Press.
    Kessler, K., Duwe, I., & Strohner, H. (1999). Grounding mental models – Subconceptual dynamics in the resolution of Linguistic reference in discourse. In G. Rickheit & C. Habel (Eds.). Mental Models in Discourse Processing and Reasoning(pp. 169-193). Amsterdam: Elsevier Science B. V.
    Kohonen, T. (1977). Associative Memory: A System Theoretic Approach. Berlin: Springer-Verlag.
    Kohonen, T. (1997). Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map. Biological Cybernetics, 75, 281-291.
    Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.
    Kuhn, D. (1993). Connecting scientific and informal reasoning. Merrill-Palmer Quarterly, 39(1), 74-103.
    Laidle, K. J. (1993). The World of Physical Chemistry. New York: Oxford University Press.
    Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.
    Langton, C. G. (1986). Studying artificial life with cellular automata. Physica D, 22, 120-149.
    Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29, 331-359.
    Lee, K. W., Goh, N. K., Chia, L. S., & Chin, C. (1996). Cognitive variables in problem solving in chemistry: a revisited study. Science Education, 80(6), 691-710.
    Lee, O., Eichinger, D. C., Anderson, C. W., Berkheimer, G. D., & Blakeslee, T. D. (1993). Change middle school students' conceptions of matter and molecules. Journal of Research in Science Teaching, 30, 249-270.
    Levy, S. (1992). Artificial Life: A Report From the Frontier Where Computers Meet Biology. New York: Pantheon-Random House.
    Liew, C. W., & Treagust, D. F. (1995). A predict-observe-explain teaching sequence for learning about students’ understanding of heat and expansion of liquids. The Australian Science Teacher Journal, 41(1), 68-71.
    Liew, C. W., & Treagust, D. F. (1998). The effectiveness of predict-observe-explain Tasks in diagnosing students’ understanding of science and in identifying their levels of achievement. Presented at the Annual Meeting of the American Educational Research Association. ED420715
    Longden, K., Black, P., & Soloman, J. (1991). Children’s interpretation of dissolving. International Journal of Science Education, 13, 59-68.
    Lumpe, A. T., & Staver, J. (1995). Peer collaboration and concept development: Learning about photosynthesis. Journal of Research in Science Teaching, 32, 71-98.
    MacKinnon, E. M. (1982). Scientific Explanation and Atomic Physics. Chicago: The University of Chicago Press.
    MacWhinney, B. (1998). Models of the emergence of language. Annual Reviews of Psychology, 49, 199-227.
    Marek, E. A., Cowan, C. C., Cavallo (1994). Students' misconceptions about diffusion: How can they be eliminated? The American Biology Teacher, 56(2), 74-78.
    Matson, W. I. (1965). The Existence of God. Ithaca, NY: Cornell University Press.
    Mayr, E. (1988). Toward a new philosophy of biology (pp. 8-37). Cambridge, MA: Harvard University Press.
    McCarthy, S. J., & McMahon, S. (1992). From convention to invention: Three approaches to peer interactions during writing. In R. H. Lazarowitz & N. Miller (Eds.), Interaction in cooperative groups: The theoretical anatomy of group learning(pp. 17-35). Cambridge: Cambridge University Press.
    McFarland, D., & Bosser, T. (1993). Intelligent Behavior in Animals and Robots. Cambridge, MA: Bradford Books-MIT Press.
    Meheut, M., & Chomat, A. (1990). The bounds of children’s atomism: An attempt to make children build up a particle model of matter. In P. L. Lijnse, P. Licht, W. de Vos, & A. J. Waarlo (Eds.), Relating Macroscopic Phenomena to Microscopic Particles: A Central Problem in Secondary Science Education(pp. 266-282). Utrecht: Centre for Science and Mathematics Education, University of Utrecht: CD-β. Press.
    Mitchell, I. (1987). Theory into practice. In J. R. Baird & I. J. Mitchell (Eds.), Improving the quality of teaching and learning. Melbourne: Monash University.
    Montgomery, H. (1984). Mental models and problem solving: Three challenges to a theory of restructuring and insight. Scandinavian Journal of Psychology, 29, 85-94.
    Morgan, C. L. (1923). Emergent evolution. London: Williams and Norgate.
    Narode, R. (1989). A constructivist program for college remedial mathematics at the University of Massachusetts, Amherst. Presented at the Practitioner’s Hall of Fame Institute, Palm Springs, CA.
    Noddings, N. (1990). Constructivism in mathematics education. In R. B. Davis, C. A. Maher, & N. Noddings (Eds.), Constructivist views on the teaching and learning of mathematics. VA: The National Council of Teachers of Mathematics.
    Novick, S., & Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of matter: An interview study. Science Education, 62(3), 273-281.
    Novick, S., & Nussbaum, J.(1981). Pupils’ understanding of particulate nature of matter : a cross-age study. Science Education, 65(2), 187-196.
    Nussbaum, J. (1991). The particulate nature of matter in the gaseous phase. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s science(pp.124-144). Buckingham: Open University Press.
    Ohlson, S. (1984a). Restructuring revised – Summary and critique of the Gestalt theory of problem solving. Scandinavian Journal of Psychology, 25, 65-78.
    Ohlson, S. (1984b). Restructuring revised – An information processing theory of restructuring and insight. Scandinavian Journal of Psychology, 25, 117-129.
    Osborne, R., & Freyberg, P. (1985). Learning in Science: The implication of children’s science, Auckland: Heinemann.
    Pagels, H. R. (1991). The Dreams of Reason: The Computer and the Rise of the Sciences of Complexity. (牟中原 & 梁仲賢 Trans. 理性之夢: 這世界屬於會作夢的人.). 台北市: 天下遠見出版公司. (Origin work published 1988)
    Penner, D. E. (2000). Explaining systems: Investigating middle school students’ understanding of emergent phenomena. Journal of Research in Science Teaching, 37(8), 784-806.
    Pepper, S. C. (1926). Emergence. Journal of Philosophy, 23, 241-245.
    Perkins, D. N., & Grotzer, T. (2000). Models and moves: Focusing on dimensions of causal complexity to achieve deeper scientific understanding. Annual Conference of American Educational Research Association.
    Pfundt, H., & Duit, R. (1991). Bibliography: Students’ Alternative Frameworks and Science Education(3rd ed.). Kiel, Germany: Institute for Science Education, University of Kiel.
    Piaget, J. (1950). The psychology of intelligence. London: Routledge and Kegan Paul.
    Piaget, J. (1985). The equilibration of cognitive structures. Chicago: University of Chicago Press.
    Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 59, 1-41.
    Popper, K. (1965). The Logic of Scientific Discovery. New York: Basic Books.
    Popper, K. (1978). Natural selection and the emergence of mind. Dialectica, 32, 339-355.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
    Prawat, R. (1989). Teaching for understanding: Three key attributes. Teaching and Teacher Education, 5, 315-328.
    Prawat, R. (1990). Changing schools by changing teachers’ beliefs about teaching and learning. Elementary Subjects Center, Series No. 19. Center for the Learning and Teaching of Elementary Subjects. E. Lansing, MI: Michigan State University.
    Prieto, T., Blanco, A., & Rodriguez, A. (1989). The ideas of 11 to 14- year- old students about the nature of solution. International Journal of Science Education, 11(4), 165-176.
    Prigogine, I. (1990). Order out of chaos. (沈力 Trans. 混沌中的秩序.). 台北市: 結構群文化事業公司. (Origin work published 1984)
    Quinlan, P. (1991). Connectionism and Psychology: A Psychological Perspective on New Connectionist Research. Hemel Hempstead, Hertfordshire: Harvester Wheatsheaf.
    Renner, J. W., & Marek, E. A. (1990). An educational theory base for science teaching. Journal of Research in Science Teaching, 27(3), 241-246.
    Resnick, M. (1994). Turtles, Termites and Traffic Jams: Explorations in Massively Parallel Microworlds. Cambridge, MA: MIT Press.
    Resnick, M. (1996). Beyond the centralized mindset. Journal of the Learning Sciences, 5, 1-22.
    Resnick, M., & Wilensky, U. (1998). Diving into complexity: Developing probabilistic decentralized thinking through role-playing activities. Journal of the Learning Science, 7, 153-171.
    Richmond, G., & Striley, J. (1996). Making meaning in classroom: Social processes in Small group discourse and scientific knowledge building. Journal of Research in Science Teaching, 33(8), 839-858.
    Rickheit, G., & Sichelschmidt, L. (1999). Mental models: Some answers, some questions, some suggestions. In G. Rickheit & C. Habel (Eds.), Mental Models in Discourse Processing and Reasoning(pp. 9-40). Amsterdam: Elsevier Science B. V.
    Roth, W. M., & Bowen, G. M. (1995). Knowing and interaction: A study of culture, practices, and resources in a grade 8 open-inquiry science classroom guides by a cognitive apprenticeship metaphor. Cognition and Instruction, 13(1), 73-128.
    Rowell, J. A., & Dawson, C. J. (1983). Laboratory counter-examples and the growth of understanding in science. European Journal of Science Education, 5, 203-215.
    Rumelhart, D. E., & McClelland, J. L. (Eds.) (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol. 1 & 2). Cambridge, MA: Bradford Books-MIT Press.
    Rumelhart, D. E., & Norman, D. A. (1978). Accretion, tuning and restructuring: Three models of learning. In J. W. Cotton & R. L. Klatsky (eds.), semantic factors in cognition(pp. 33-58). Hillsdale, NJ: Erlbaum.
    Russell, B. (1913). On the notion of cause. Proceedings of the Aristotelian Society, 13, 1-26.
    Sattler, R. (1986). Biophilosophy. pp.125-149. Berlin: Springer-Verlag.
    Schollum, B., & Osborne, R. (1990). Relating the new to the familiar. In R. Osborne & P. Freyberg (Eds.), Learning in science: The implication of children’s science. (pp.51-65). Auckland, N.Z.: Heinemann Education.
    Senge, P. M. (1994). The Fifth Discipline: The Art and Practice of the Learning Organization. (郭進隆Trans. 第五項修鍊: 學習型組織的藝術與實務.). 台北市: 天下遠見出版公司. (Origin work published 1990)
    Slotta, J. D., & Chi, M. T. H. (1996). Understanding constraint-based processes: A precursor to conceptual change in physics. In G. W. Cottrell (Ed.), Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society(pp. 306-311). Mahwah, NJ: Erlbaum.
    Slotta, J. D., Chi, M. T. H., & Joram, E. (1995). Assessing students’s misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction, 13, 373-400.
    Stavridou, H., & Solomonidou, C. (1989). Physical phenomena-chemical phenomena: do pupils make the distinction? International Journal of Science Education, 11(1), 83-92.
    Stavy, R. (1990). Children's conception of changes in state of matter:from liquid(or solid)to gas. Journal of Research in Science Teaching, 28(4), 305-313.
    Steels, L. (1991). Towards a theory of emergent functionality. In J. A. Meyer & S. W. Wilson (Eds.). From Animals to Animats, Proceedings of the First International Conference on Simulation of Adaptive Behavior (pp.451-461). Cambridge, MA: Bradford Books-MIT Press.
    Stein, W. D., & Varela, F. J. (1993). Thinking about Biology: An Invitation to Current Theoretical Biology. Reading, MA: Addison-Wesley.
    Steiner, I. D. (1972). Group process and productivity. New York: Academic Press.
    Stencel, J., & Barkoff, A. (1993). Protein synthesis: Role-playing in the classroom. The American Biology Teacher, 55(2), 102-103.
    Stepans, J. (1991). Developmental patterns in students’ understanding of physics concepts. In S. M. Glynn, R. H. Yeany, & B. K. Britton (Eds.), The psychology of learning science(pp. 89-115). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Stephan, A. (1998). Varieties of emergence in artificial and natural systems. Zeitschrift fur Naturforschung C, 53, 639-656.
    Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. Duschl & R. Hamilton (Eds.), Philosophy of Science, Cognitive Psychology, and Educational Theory and Practice(pp. 147-176). Albany, NY: SUNY.
    Sussman, H. M., Fruchter, D., Hilbert, J., & Sirosh, J. (1998). Linear correlates in the speech signal: the orderly output constraint. Behavioral and Brain Sciences, 21, 241-299.
    Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
    Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404.
    Tytler, R. (1993). Teaching science using toys and tricks. Investigating, 9, 17-19.
    Uretsky, M. (1973). The management game: an experiment in reality. Simulation & Games, 4, 221-240
    Vallacher, R. R., & Nowak, A. (1994). Dynamical systems in social psychology. San Diego: Academic Press.
    VanSickle, R. (1978). Designing simulation games to teach decision-making skills. Simulation & Games, 4, 221-240.
    Viennot, L. (1979). Spontaneous reasoning in elementary dynamics. European Journal of Science Education, 1, 205-221.
    von Glaserfeld, E. (1989). Cognition, construction of knowledge and teaching. Synthese, 80, 121-140.
    Vosniadou, S. (1994). Conceptual change in the physical sciences. Learning and Instruction, 4, (Special Issue)
    Vosniadou, S., & Brewer, W. F. (1987). Theories of knowledge restructuring in the development. Review of Educational Research, 57, 51-67.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth. Cognitive Psychology, 24, 535-538.
    Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123-183.
    Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: a psychological point of view. International Journal of Science Education, 20(10), 1213-1230.
    Vygotsky, L. S. (1962). Development of science concepts in childhood. In E. Hanfman & G. Vakar (eds), Thought and Language(pp. 82-118). Cambridge, MA: MIT Press.
    Waldrop, M. M. (1994). Complexity: The Emerging Science at the Edge of Order and Chaos. (齊若蘭 Trans. 複雜: 走在秩序與混沌邊緣). 台北市: 天下遠見出版公司. (Origin work published 1992)
    Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. D. L. Gabel (Ed.), Handbook of Research on Science Teaching and Learning(pp.177-210). New York: Simon and Schuster MacMillan.
    Westbrook, S. L., Marek, E. A.(1991) A cross-age study of student understanding of the concept of diffusion. Journal of Research in Science Teaching, 28(8), 649-660.
    White, R., & Gunstone, R. (1992). Probing understanding. London: The Falmer Press.
    Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3-19.
    Wyn, M. A., & Stegink, S. J. (2000). Role-playing mitosis. The American Biology Teacher, 62(5), 378-381.

    QR CODE