簡易檢索 / 詳目顯示

研究生: 林煜軒
Lin, Yu-Xuan
論文名稱: 混合動力散熱模組之機電系統設計與控制
Electromechanical System Design and Control of Hybrid Cooling Module
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 66
中文關鍵詞: 冷卻系統系統動態雙電源燃料電池鋰電池
英文關鍵詞: Cooling system, System dynamics, Dual power sources, Fuel cell, Lithium battery
論文種類: 學術論文
相關次數: 點閱:170下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計混合電能車輛導向之機電整合混合散熱系統,利用機電整合來控制虛擬燃料電池與鋰電池在目標溫度區間(40℃/55℃)。本系統結構分加熱與散熱兩個子系統,加熱系統又分軟體與硬體,軟體部分透過Matlab/Simulink的車輛理論建模,以設計4kW輕型電動載具於追隨ECE40行車形態下得出廢熱功率之結果,並輸入於NI LabVIEW與可程式電源供應器中,方可控制硬體部分所模擬之雙電力源(鋰電池及燃料電池)之加熱器,提供即時熱功率負載以模擬實際車輛電池放熱變化。散熱系統又分軟體與硬體,軟體部分用於控制系統溫度,透過Matlab/Simulink及Stateflow來建立rule-base規則庫控制,輸入為雙加熱器之溫度訊號,輸出為控制三個硬體散熱元件包含:電子式比例閥、熱交換器風扇及冷卻水泵。並將規則庫控制燒錄於快速雛型控制器(Rapid-Prototyping Controller)以即時監控,使電池控制在目標溫度來充放電。而研究結果顯示在三種固定功率及ECE40行車型態變動功率之加熱情況,本系統可使燃料電池與鋰電池維持在最佳工作溫度。未來將進行實車驗證,了解混合動力散熱系統在實車上面之動力源冷卻表現、省能表現與整合狀況,因此須將整合後之冷卻系統應用在無人駕駛機車底盤動力計上進行實驗分析。

    The research intergrated the electromechanical hybrid cooling system of hybrid electric vehicle, using electromechanical integration to control the virtual fuel cell and lithium batteries maintaining the target temperature range (40℃ / 55℃). The system structure is divided into two subsystems of heating and cooling, and heating system is divided into software and hardware. At software section, in order to get the thermal power, using vehicle theory on Matlab / Simulink to model, designing 4 kW light electric vehicle which follows the driving style of ECE40. And type in NI LabVIEW and programmable power supplies, in order to control the dual power source (lithium batteries and fuel cells) of heater which the hardware section simulate, providing instant thermal power load to simulate the actual vehicle battery exothermic change. Cooling system is divided into software and hardware, software section using for controlling the temperature of the system, through the Matlab / Simulink and Stateflow to establish rale-base rule base controlling. The input is the temperature signal of double heater, and the output is used to control the three hardware radiating element; electronic proportional valves, heat exchangers, fans and cooling pump. And burn the rule base control strategy in Rapid-Prototyping Controller for real-time monitoring, in order to control the battery at the target temperature for charging and discharging. The study shows that in the heating situation of the three fixed-power and the variation power case of ECE40, the system would let the fuel cell and lithium batteries maintain at the best working temperatures. The real vehicle verification will be performed in the future to learn the power source cooling performance of the hybrid cooling system, and integration situation of energy-saving performance. Therefore, the integrated cooling system should be applied on the unmanned motorcycle chassis dynamometer to experiment and analysis.

    目錄 摘要 i 英文摘要 ii 誌謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究方法 3 1.5 論文架構 4 1.6 文獻回顧 5 第二章 熱動態推導與系統規格設計 11 2.1 混合動力車電力源熱動態推導 11 2.1.1 燃料電池 11 2.1.2 鋰電池 12 2.1.3 混合散熱系統整合 13 2.1.4 混合動力源廢熱功率模型建立 14 2.2 系統元件規格設計 18 第三章 系統建立與控制策略設計 25 3.1 規則庫與控制策略推導 25 3.2 混合散熱系統平台建立 27 第四章 實驗結果與討論 33 4.1 系統元件性能分析 33 4.2 基礎流體實驗固定加熱功率實驗 34 4.2.1 固定加熱功率300 W/700 W 34 4.2.2 固定加熱功率400 W/600 W 40 4.2.3 固定加熱功率500 W/500 W 44 4.3 基礎流體實驗變動加熱功率 49 第五章 結論與未來工作 56 5.1 結論 56 5.2 未來工作 57 參考文獻 57   表目錄 表2-1 加熱器規格表 18 表2-2 可程式電源供應器規格表 19 表2-3 溫度傳送器規格表 20 表2-4 熱交換器規格表 21 表2-5 冷卻風扇規格表 22 表2-6 冷卻水泵規格表 22 表2-7 電子式比例閥規格表 23   圖目錄 圖1-1 研究流程圖 4 圖1-2 IOA概念之功率、電力系統[17] 6 圖1-3 混合動力源配置[18] 6 圖1-4 模擬流程圖[18] 6 圖1-5 燃料電池車動力系統各結構(a)燃料電池(b)燃料電池/超級電容器(c)燃料電池/鋰電池/超級電容[20] 7 圖1-6 電池冷卻網路系統[50] 10 圖2-1 燃料電池本體熱傳示意圖 11 圖2-2 鋰電池本體熱傳示意圖 12 圖2-3 混合散熱系統架構 13 圖2-4 總輸出功率 15 圖2-5 整車能量源分配 15 圖2-6 鋰電池SOC效率/功率輸出 16 圖2-7 燃料電池效率/功率搜尋輸出 16 圖2-8 燃料電池廢熱功率模型 17 圖2-9 鋰電池廢熱功率模型 17 圖2-10 加熱器電熱管 18 圖2-11 加熱器不鏽鋼槽 19 圖2-12 可程式直流電源供應器 19 圖2-13 溫度傳送器 20 圖2-14 熱交換器 21 圖2-15 整合式冷卻風扇 22 圖2-16 冷卻水泵 23 圖2-17 比例閥之控制器電路 24 圖2-18 比例閥之流量分配切換 24 圖3-1 機電混合動力散熱系統架構 28 圖3-2 機電混合散熱平台設計 29 圖3-3 機電混合動力散熱平台實體配置 30 圖3-4 加熱控制系統架構 31 圖3-5 散熱控制系統之軟硬體架構 32 圖4-1 閥門電壓對於流量分配比關係 33 圖4-2 風扇電壓與流速(1,2,3 L/min)及熱源30℃/35℃散熱功率關係 34 圖4-3 固定加熱功率300W/700W(FC/Bat) 35 圖4-4 加熱功率300W/700W目標溫度控制(Bat40℃) 36 圖4-5 加熱功率300W/700W目標溫度控制(FC55℃) 37 圖4-6 加熱功率300W/700W(Bat/FC)之電子比例閥電壓變化 38 圖4-7 加熱功率300W/700W(Bat/FC)之熱交換器風扇電壓變化 39 圖4-8 加熱功率300W/700W(Bat/FC)之冷卻水泵電壓變化 40 圖4-9 固定加熱功率400W/600W(Bat/FC) 41 圖4-10 加熱功率400W/600W目標溫度控制(Bat40℃) 41 圖4-11 加熱功率400W/600W目標溫度控制(FC55℃) 42 圖4-12 加熱功率400W/600W(Bat/FC)之電子比例閥電壓變化 42 圖4-13 加熱功率400W/600W(Bat/FC)之熱交換器風扇電壓變化 43 圖4-14 加熱功率400W/600W(Bat/FC)之冷卻水泵電壓變化 44 圖4-15固定加熱功率500W/500W(Bat/FC) 45 圖4-16 加熱功率500W/500W目標溫度控制(Bat40℃) 45 圖4-17 加熱功率500W/500W目標溫度控制(FC55℃) 46 圖4-18 加熱功率500W/500W(Bat/FC)之電子比例閥電壓變化 47 圖4-19 加熱功率500W/500W(Bat/FC)之熱交換器風扇電壓變化 48 圖4-20 加熱功率500W/500W(Bat/FC)之冷卻水泵電壓變化 49 圖4-21 變動加熱功率ECE40(Bat) 50 圖4-22 變動加熱功率ECE40(FC) 50 圖4-23 變動加熱功率ECE40目標溫度控制(Bat40℃) 51 圖4-24 變動加熱功率ECE40目標溫度控制(FC55℃) 51 圖4-25 變動加熱功率ECE40之電子比例閥電壓變化 53 圖4-26 變動加熱功率ECE40之熱交換器風扇變化 54 圖4-27 變動加熱功率ECE40之冷卻水泵電壓變化 55 圖5-1 奈米氧化鋁場發射掃描FE-SEM[70] 57 圖5-2 奈米氧化鋁穿透式TEM[71] 58

    參考文獻
    [1] J. Baker, “New technology and possible advances in energy storage,” energy policy, Vol.36, pp.4368-4373, 2008.
    [2] P. Thounthong and S. Rael, B. Davat, “Energy management of fuel cell/ supercapacitor hybrid power sources based on the flatness control,” Power Engineering Energy and Electrical Drives, Vol.13, pp.128-133, 2013.
    [3] A. Thounthong, N., “Limwuthugraijirat experimental assessment of fuel cell/supercapacitor hybrid system for scooters,” International Journal of Hydrogen Energy, Vol.34, pp.6036-6044, 2009.
    [4] Y. H. Hung, C.W. Hong, “Bond graph modelling of fuel cell and engine hybrid electric scooters,” International Journal of Vehicle Design, Vol.45, pp.522-541, 2007.
    [5] Y. H. Hung, S. F. Lee, H. C. Shih, C. F. Lin, T. P. Teng, Y. F. Lue, P. H. Lin, “Study of a novel cooling system for fuel cell/lithium battery power sources, The 21st International Symp. on Transport Phenomena,” Kauhsiung City, Taiwan, pp.2-5, 2010.
    [6] P. Zhou, C. W. Wu, G, J. Ma, “Contact resistance prediction and structure optimization of bipolar plates,” Journal of Power Sources, Vol.159, pp.1115-1122, 2006.
    [7] M. S. Wu, K. H. Liu, Y. Y. Wang, C. C. Wan, “Heat dissipation design for lithium-ion batteries,” Journal of Power Sources, Vol.109, 160-166, 2002.
    [8] G. H. Guvelioglu, H. G. Stenger, “Flow rate and humidification effect on a pem fuel cell performance and operation,” Journal of Power Sources, Vol.163, pp.882-891, 2007.
    [9] K. Q. Ma, J. Liu, “Nano liquid-metal fluid as ultimate coolant,” Journal of Power Sources, Vol.361, pp.252-256, 2006.
    [10] C. Kleinstreuer, Y. Feng, “Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review nanoscale research letters,” Journal of Power Sources, Vol.6, pp.229, 2011.
    [11] B. Thoben, A Siebke, “Influence of different gas diffusion layers on the water management of the PEFC cathode,” Journal of Electrochem, Vol.7, pp.13-20 ,2004.
    [12] E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, “Energy storage devices for future hybrid electric vehicles,” Journal Power Sources,Vol.168, pp.2-11, 2007.
    [13] C. C. Chan and Y. S. Wong, “Electric vehicles charge forward,” IEEE Power Energy Mag., Vol.2, pp.24-33, 2004.
    [14] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “ Battery choice and management for new-generation electric vehiclesc,” IEEE Trans. Ind. Electron., Vol.52, pp.1343-1349, 2005.
    [15] W. Gao, “Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain,” IEEE Trans. Veh. Technol., Vol.54, pp.846-855, 2005.
    [16] K. B. Sheu, “Simulation for the analysis of a hybrid electric scooter powertrain,” Applied Energy, Vol.85, pp.589-606, 2008.
    [17] Y. H. Hung , C. H. Wu, “An integrated optimization approach for a hybrid energy system in electric vehicles,” Applied Energy, Vol.98, pp.479-490, 2012.
    [18] T. K. Chau, Y. S. Wong, “Hybridization of energy sources in electric vehicles,” Energy Conversion and Management, Vol.42, pp.1059-1069, 2001.
    [19] S. M. Lukic, S. G. Wirasinga, F. Rodrigues, J. Cao, A. Emadi, “Power management of an ultracapacitor/battery hybrid energy storage system in an HEV,” Vehicle Power and Propulsion Conference, Vol.6, pp.1-6, 2006.
    [20] J. Bauman, M. Kazerani, “A Comparative Study of Fuel Cell-Battery, Fuel cell-ultracapacitor, and fuel cell-battery-ultracapacitor vehicles,” IEEE Trans. On Vehicular Technology, Vol.57, pp.760-769, 2008.
    [21] J. Chatzakis, K. Kalaitzakis, N. C. Voulgaris, and S. N. Manias, “Designing a new generalized battery management system,” IEEE Trans. Ind. Electron., Vol.50, pp.990-999, 2003.
    [22] G. Paganelli, Y.Guezennec, G. Rizzoni, “Optimizing control strategy for hybrid fuel cell vehicle,” SAE Technical Paper, Vol.4, 96-102, 2002.
    [23] LJMJ. Blomen, N. M. Mugerwa, “Fuel cell systems, new york,” Plenum Press, 1993.
    [24] S. Williamson and A. Emadi, “Comparative assessment of hybrid electric and fuel cell vehicles based on comprehensive well-to-wheels efficiency analysis,” IEEE Trans. Veh. Technol.,Vol.54, pp.856-862, 2005.
    [25] A. Emadi, K. Rajashekara, S. Willisamson, and S. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., Vol.54, pp.763-770, 2005.
    [26] S. G. Chalk and J. F. Miller, “Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems,” Journal Power Sources, Vol.159, pp.73-80, 2006.
    [27] P. R. Pathapati, X. Xue, and J. Tang, “A new dynamic model for predicting transient phenomena in a PEM fuel cell system,” Renewable Energy, Vol.30, pp.1-22, 2005.
    [28] Y. Shan, and S. Y. Choe, “A high dynamic PEM fuel cell model with temperature effects,” Journal of Power Sources, Vol.145, pp.30-39, 2005.
    [29] Y. Zhang, M. Ouyang, Q. Lu, J. Luo, X. Li, “A model predicting performance of proton exchange membrane fuel cell stack thermal systems,” Applied Thermal Eng., Vol.24, pp.501-513, 2004.
    [30] G. Vasu, A. K. Tangirala, “Control-oriented thermal modeling for proton-exchange membrane fuel cell system,” Journal of Power Sources, Vol.183, pp.98-108, 2008.
    [31] J. Nolan, J. Kolodziej, “Modeling of an automotive fuel cell thermal system,” Journal of Power Sources, Vol.195, pp.4743-4752, 2010.
    [32] Y. Chen, L. Song, J. W. Evans, “Modeling studies on battery thermal behavior, thermal runaway, thermal management and energy efficiency,” Institute of Electrical and Electronics, Vol.2, pp.1465-1470, 1996.
    [33] G. Maggio, V. Recupero, C. Mantegazza, “Modeling of temperature distribution in a solid polymer electrolyte fuel cell stack,” Journal of Power Sources, Vol.62, pp.167-174, 1996.
    [34] A. Faghri, Z. Guo, “Challenge and opportunities of thermal management issues related to fuel cell technology and modelling,” Journal of Heat and Mass Transfer, Vol.48, pp.3891-3920, 2005.
    [35] J. H. Lee, T. R. Lalk, A. J. Appleby, “Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks,” Journal of Power Sources, Vol.70, pp.258-268, 1998.
    [36] T. V. Nguyen, R. E. White, “A water and heat management model for proton exchange membrane fuel cells,” Journal of the Electrochemical, Vol.180, pp.2178-2186, 1993.
    [37] N. Djilali, D. M. Lu, “Influence of heat transfer on gas and water transport in fuel cells,” Journal of Thermal Sciences, Vol.41, pp.29-40, 2002.
    [38] B. Scrosati and J. Garche, “Lithium batteries: Status, prospects and future,” Journal of Power Sources, Vol.195, pp.2419-2430, 2010.
    [39] A. J. Smith, J. C. Burns, S. Trussler, J. R. Dahn, “Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries,” Journal of The Electrochemical Society, Vol.157, pp.196-202, 2010.
    [40] L. Lua, X. Hana, J. Lia, J. Huab, M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of power sources, Vol.226 pp.72-288, 2013.
    [41] Z. Xiongwen, “Thermal analysis of a cylindrical lithium-ion battery, Electrochimica Acta,” Journal of power sources, Vol.56, pp.1246-1255, 2011.
    [42] A. A. Pesaran, K. Keyser, “Thermal Characteristics of selected EV and HEV Batteries, Proceedings of the 16th Annual Battery Conference: Applications and Advances,” Journal of power sources, Vol.161, pp.6-18, 2001.
    [43] Y. H. Yea, Y. X. Shia, N. Caia, J. Leeb, X. G. He, “Electro-thermal modeling and experimental validation for lithium ion battery,” Journal of Power Sources, Vol.199, pp.227-238, 2012.
    [44] Z. Raoa, and S. Wanga, M. Wua, Z. Lina, F. Lib, “Experimental investigation on thermal management of electric vehicle battery with heat pipe,” Energy Conversion and Management, Vol.65, pp.92-97, 2013.
    [45] C. Salvio, and M. C. Yongmann, “Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles,” Journal of Power Sources, Vol.213, pp.296-303, 2012.
    [46] H. S. Hamut, I. Dincer, and G. F. Naterer, “Exergy analysis of a TMS (thermal management system) for range-extended EVs (electric vehicles),” Energy, Vol.46, pp.117-125, 2012.
    [47] H. S. Hamut, I. Dincer, and G. F. Naterer, “Performance assessment of thermal management systems for electric and hybrid electric vehicles,” Journal of Energy Research, Vol.37, pp.1-12, 2013.
    [48] N. Sato, “Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles,” Journal of Power Sources, Vol.99, pp.70-77, 2001.
    [49] A. A. Pesaran, “Battery thermal management in EVs and HEVs: Issues and Solutions,” Advanced Automotive Battery Conf., pp.6-8, 2001.
    [50] J. M. Mottard, C. Hannay, E. L. Winandy, “Experimental study of the thermal behavior of a water cooled Ni-Cd battery,” Journal of Power Sources, Vol.117, pp.212-222, 2003.
    [51] N. A. Monfared, N. Gharib, H. Moqtaderi, M. Hejabi, M. Amiri, F. Torabi, A. Mosahebi, “Prediction of state-of-charge effects on lead-acid battery characteristics using neural network parameter modifier,” Journal of Power Sources, Vol.158, pp.932-935, 2006.
    [52] S. Bhatikar, R. L. Mahajan, K. B. Wipke, V. Johnson, “Artificial neural network based energy storage system modeling for hybrid electric vehicles,” Proceeding of the Future Car Congress, 2000.
    [53] X. Yu, B. Zhou, A. Sobiesiak, “Water and thermal management for ballard PEM fuel cell stack,” Journal of Power Sources, Vol.147, pp.184-195, 2005.
    [54] F. R. Salmasi, “Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends,” IEEE Trans Veh Technol, Vol.56, pp.2393-2404, 2007.
    [55] P. Melin, O. Castillo, “Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach,” IEEE Trans. Ind. Electron., Vol.48, pp.951-955, 2001.
    [56] O. Erdinc, B. Vural, M. Uzunoglu, “A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system,” Journal Power Sources, Vol.194, pp.369-380, 2009.
    [57] P. Pisu, G. Rizzoni, “A Comparative Study Of Supervisory Control Strategies for Hybrid Electric Vehicles,” IEEE Trans. Control Systems Technology.,Vol.15, pp.506-518, 2007.
    [58] J. Moreno, M. E. Ortuzar, and J. W. Dixon, “Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks,” IEEE Trans. Ind. Electron.,Vol.53, pp.614-623, 2006.
    [59] K.Y. Leong, R. Saidur, S.N. Kazi, A.H. Mamun, “Performance investigation of an automotive carradiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator),” Applied Therm. Eng., Vol.30, pp.2685-2692, 2010.
    [60] N. Sato, “Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles,” Journal of Power Sources., Vol.99, pp.70-77, 2001.
    [61] D. P. Kulkarni, R. S. Vajjha, D. K. Das, D. Oliva, “Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant,” Applied Therm. Eng., Vol.28, pp.1774-1781, 2008.
    [62] B. Aladag, S. Halelfadl, N. Doner, T. Mar´e, S. Duret, and P. Estell´e, “ Experimental investigations of the viscosity of nanofluids at low temperatures,” Applied Energy, Vol.97, pp.876-880, 2012.
    [63] T. Mar´e, S. Halelfadl, O. Sow, P. Estell´e, S. Duret, and F. Bazantay, “Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger,” Experimental Thermal and Fluid Science, Vol.35, pp.1535-1543, 2011.
    [64] C. Kleinstreuer, Y. Feng, “Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review,” Nanoscale Res. Lett., Vol.6 pp.229-242, 2011.
    [65] X. M. Xu and R. He, “Research on the heat dissipation performance of battery pack based on forced air cooling,” Journal of Power Sources, Vol.240, pp.33-41, 2013.
    [66] H. Park, “A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles,” Journal of Power Sources, Vol.239, pp.30-36, 2013.
    [67] T. P. Teng, Y. B. Fang, Y. C. Hsu, L. Lin, “Evaluating stability of aqueous multiwalled carbon nanotube nanofluids by using different stabilizers,” Journal of Nanomaterials, Vol.2014, 2014.
    [68] Y. H. Hung, J. H. Chen, and T. P. Teng, “Feasibility assessment of thermal management system for green power sources using nanofluid,” Journal of Nanomaterials, Vol.2013, 2013.
    [69] Y. H. Hung, T. P. Teng, B. G. Lin, “Evaluation of thermal performance for heat pipe using alumina nanofluids,” Experimental Thermal and Fluid Science, Vol.44, pp.504-511, 2013.
    [70] Y. H. Hung, T. P. Teng, T. C. Teng, J. H. Chen, “Assessment of heat dissipation performance for nanofluid,” Applied Therm. Eng., Vol.32, pp.132-140, 2012.
    [71] T. P. Teng, Y. H. Hung, T. C. Teng, J. H. Chen, “Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow,” Nanoscale Research Letters, Vol.6, 2011.
    [72] Y. H. Hung, and H. J. Gu, “Multiwalled carbon nanotube nanofluids used for heat dissipation in hybrid green energy systems,” Journal of Nanomaterials, Vol.2014, 2014.

    下載圖示
    QR CODE