簡易檢索 / 詳目顯示

研究生: 涂文廷
Wen-Tin Tu
論文名稱: 抑制矽化物生成的低溫鐵薄膜之成長與磁性研究
Growth and Magnetism of Low-temperature Deposited Fe/Si(111) Films as an Intermediate Layer for Suppression of Silicide Formation
指導教授: 林文欽
Lin, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 69
中文關鍵詞: 磁性矽化物低溫薄膜
英文關鍵詞: Fe, Si, low temperature, magnetism, silicide, film
論文種類: 學術論文
相關次數: 點閱:249下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於室溫成長,低溫下成長於矽基板上的鐵薄膜成功的減少了矽和鐵介面間的矽化物產生。在鐵矽介面間,5到15層低溫成長的鐵薄膜,在350K下都能夠維持穩定的狀態。同時,低溫成長的鐵薄膜其表面相當的平整,粗糙度約在0.4到0.6個奈米間。因此,低溫的鐵薄膜被用來做為一介面層,接續在室溫下繼續蒸鍍鐵薄膜。我們利用磁異相能的單一磁矩模型,來模擬矯頑場的變化,並推論和討論表面及體積異相能。

    Low temperature (LT: 100 K) deposition of Fe on Si(111)7x7 surface effectively reduces Fe-silicide formation at the Fe/Si interface, as compared with conventional room temperature (RT) growth.
    The interface condition of 5-15 monolayer (ML) LT-Fe/Si(111) remains stable at least up to 350 K. Si segregation was observed after annealing at 400 K.
    LT-grown Fe films also reveal a relatively flat surface morphology with a roughness of 0.4-0.6 nm. Thus, LT-Fe films were suggested as an intermediate layer for the subsequent RT-growth of Fe. We use a single domain model of magnetic anisotropy to fit the magnetic coercivity evolution of n ML RT-Fe on 5 ML LT-Fe/Si(111). Accordingly, we deduce the surface and volume-contributed magnetic anisotropy for discussion.

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Si(111)7x7 . . . . . . . . . . . . . . . . . . . . . .2 2 Basic Concept . . . . . . . . . . . . . . . . . . . . . .8 2.1 Adsorption of Molecules . . . . . . . . . . . . . . .8 2.1.1 Modes of Adsorption . . . . . . . . . . . . . . . .8 2.1.2 Rate of Adsorption . . . . . . . . . . . . . . . . 8 2.1.3 Crystal . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Wood's Notation . . . . . . . . . . . . . . . . . 13 2.2 Film growth . . . . . . . . . . . . . . . . . . . . .16 2.3 Ferromagnetism . . . . . . . . . . . . . . . . . . ..18 2.3.1 Origin of magnetism . . . . . . . . . . . . . . . 19 2.3.2 Anisotropy energy . . . . . . . . . . . . . . . . 20 2.3.3 Magnetic hysteresis loop . . . . . . . . . . . . .21 2.3.4 Stoner-wahlfarth model . . . . . . . . . . . . . .22 3 Experimental Apparatus . . . . . . . . . . . . . . . . .27 3.1 Multi-functional UHV systems . . . . . . . . . . . . 27 3.2 Scanning Tunneling Microscopy (STM) . . . . . . . . .32 3.3 AES and LEED . . . . . . . . . . . . . . . . . . . . 39 3.4 Magneto-Optical Kerr e ect(MOKE) . . . . . . . . . . 42 4 Experiment and Results . . . . . . . . . . . . . . . . .48 4.1 LT(100K)-growth of Fe/Si(111) . . . . . . . . . . . .51 4.2 MOKE measurement . . . . . . . . . . . . . . . . . . 57 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 64

    [1] J.M. Gallego, J. M. Garc ia, J. Alvarez, and R.Miranda, Phys.Rev. B 46, 13339 (1992).
    [2] J. S. Tsay and Y. D. Yao, Appl. Phys. Lett. 74, 1311 (1999).
    [3] Z.H. Nazir, C.-K.Lo, M. Hardiman, J. Magn. Magn. Mater. 156,435 (1996).
    [4] B. Ghebouli, S.-M. Ch erif, A. Layadi, B. Helifa, M. Boudissa, J.Magn. Magn. Mater. 312, 194 (2007).
    [5] J. S. Tsay, H. Y. Nieh, C. S. Yang, Y. D. Yao, T. S. Chin, J.Appl. Phys. 93, 8728 (2003).
    [6] J. S. Tsay, T. Y. Fu, M. H. Lin, C. S. Yang, and Y. D. Yao, Appl.Phys. Lett. 88, 102506 (2006).
    [7] J. Alvarez, A. L. V azquez de Parga, J. J. Hinarejos, J. de laFiguera, E. G. Michel, C. Ocal. and R. Miranda, Phys. Rev. B47, 16048 (1993).
    [8] A.Pimpinelli,and J. Villain in Physics of crystal growth,(Cambridge University press, United Kingdom, 1998),p.144.
    [9] Brommer, J. Appl. Phys. 89, 7139 (2001).
    [10] Stich, Phys. Rev. B 55, 5886 (1997).
    [11] S. Banerjee, G. Raghavan, M. K. Sanyal, J. Appl. Phys. 85, 7135(1999).
    [12] A. Mascaraque, J. Avila, C. Teodorescu, M. C. Asensio, E. G.Michel, Phys. Rev. B 55, R7315 (1997).
    [13] R. Klasges, C. Carbone, W. Eberhardt, C. Pampuch, O. Rader,T. Kachel, W. Gudat, Phys. Rev. B 56, 10801 (1997).
    [14] D. Sander, A. Enders, and J. Kirschner, Appl. Phys. Lett. 67,1833 (1995).
    [15] A. Wawro, S. Suto, R. Czajka, and A. Kasuya, Phys. Rev. B 67,195401 (2003).
    [16] Le Thanh Vinh, J. Chevrier, and J. Derrien, Phys. Rev. B 46,15946 (1992).
    [17] G. Garreau, S. Hajjar, J. L. Bubendor , and C. Pirri, D. Berling,A. Mehdaoui, R. Stephan, P. Wetzel, S. Zabrocki, G. Gewinner,S. Boukari, E. Beaurepaire, Phys. Rev. B 71, 094430 (2005).
    [18] D. L. Goroshko, N. G. Galkin, D. V. Fomin, A. S. Gouralnik, andS. V. Vavanova, J. Phys.: Condens. Matter 21, 435801 (2009).
    [19] D. L. Goroshko, N. G. Galkin, and A. S. Gouralnik, J. Appl. Phys.107, 063709 (2010).
    [20] F. Zavaliche, W. Wulfhekel, M. Przybylski, S. Bodea, J. Grabowski and J. Kirschner, J. Phys. D: Appl. Phys. 36, 779 (2003).
    [21] F. Zavaliche, W. Wulfhekel, H. Xu, and J. Kirschner, J. Appl.Phys. 88, 5289 (2000).
    [22] F. Stromberg, S. Bedanta, C. Antoniak, W. Keune, and H. Wende, J. Phys.: Condens. Matter 20, 425205 (2008).
    [23] K. Kataoka, K. Hattori, Y. Miyatake, and H. Daimon, Phys. Rev.B 74, 155406 (2006).
    [24] I.-H. Hong, Y.-C. Liao, and S.-C. Yen, Adv. Funct. Mater.19,3389 (2009).
    [25] I.-H. Hong, S.-C. Yen, and F.-S. Lin, Small 16, 1855 (2009).
    [26] A. Wawro, S. Suto, R. Czajka, and A. Kasuya, Nanotech. 19,205706 (2008).
    [27] M. Cougo dos Santos, J. Geshev, L. G. Pereira, M. C. M. Alves,and J. E. Schmidt, Phys. Rev. B 70, 104420 (2004).
    [28] Y. Nakamura, R. Suzuki, M. Umeno, S.-P. Cho, N. Tanaka, M.Ichikawa, Appl. Phys. Lett. 89, 123104 (2006).
    [29] M. Cougo dos Santos, J. Geshev, D. K. Silva, J. E. Schmidt, L. G.Pereira, R. Hubler, P. Allongue, J. Appl. Phys. 94, 1490 (2003).
    [30] An Introduction to Surface Chemistry, edited by Dr. Roger M.Nix (School of Biological and Chemical Sciences Queen Mary,University of London, 1997 )
    [31] Mathematical Models of Hysteresis and their Applications (Seconded.), edited by Mayergoyz, Isaak D. (2003).
    [32] Day, R.; Fuller, M.; Schmidt, V. A., Physics of the Earth andPlanetary Interiors 13: 260{267 (1977).
    [33] Pfeier, H., Physica Status Solidi A 118: 295{306.
    [34] Stoner, E. C.; Wohlfarth, E. P., Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences 240: 599{642 (1948).
    [35] Wohlfarth, E. P., Journal of Applied Physics 29: 595{596 (1958).
    [36] Zhang, H.; Rong, C.; Zhang, J.; Zhang, S., Applied Physics Letters 82: 4098-4100 (2003).
    [37] L.N. Leiberman, D.R. Fredkin, H.B. Shore, Phys. Rev. Lett. 2,539 (1969).
    [38] L.N. Leiberman, J. Clinton, D.M. Edwards, J. Mathon, Phys.Rev. Lett. 25, 232 (1970).
    [39] S. Hope, E.Gu, B. Choi and J. K. Howard, J. Appl. Phys. 62,2989 (1987).
    [40] I.I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh,Yu. S. Dedkov, and S. L. Molodtsov, J. Appl. Phys. 104, 104914(2008).
    [41] R. Tsushima, Y. Michishita, S. Fujii, H. Okado, K. Umezawa,Y. Maeda, Y. Terai, K. Oura, M. Katayama, Surf. Sci. 579, 73(2005).
    [42] Handbook of Auger Electron Spectroscopy, edited by L. E. Davis,N. C. MacDonald, P. W. Palmberg, G. E. Riach, R. E. Weber(U.S.A., Minnesota, 1976).
    [43] W. C. Lin, C. B. Wu, P. J. Hsu, H. Y. Yen, Zheng Gai, Lan Gao,and J. Shen, M.-T. Lin, J. Appl. Phys. 108, 34312 (2010).
    [44] W. C. Lin, B.Y. Wang, Y.W. Liao, K.-J. Song, M.-T. Lin, Phys.Rev. B 71, 184413 (2005).
    [45] W.-C. Lin, H.-Y. Chang, Y.-T. Hu, and C.-C. Kuo IEEE Mag.Tran. 45, 4037 (2009).

    下載圖示
    QR CODE