簡易檢索 / 詳目顯示

研究生: 曾子倫
Tseng, Tzu-Lung
論文名稱: 利用PLD製備含有氧化鎂鋅緩衝層的氧化釓鋅薄膜之結構、光學與磁性研究
Effects of ZnMgO buffer layer on structural, optical and magnetic properties of ZnGdO thin films grown by pulsed-laser deposition
指導教授: 駱芳鈺
Lo, Fang-Yuh
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 44
中文關鍵詞: 稀磁性半導體氧化鋅氧化鎂脈衝雷射蒸鍍法
英文關鍵詞: DMS, ZnO, Gd, MgO, pulsed-laser deposition
DOI URL: https://doi.org/10.6345/NTNU202204671
論文種類: 學術論文
相關次數: 點閱:162下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以脈衝雷射蒸鍍法在c指向的單晶藍寶石基板上製備Zn1-xGdxO,改變濃度、基板溫度、雷射能量並探討鍍膜速率、薄膜結構特性、光學特性和磁性。此外,製備(Zn1-xGdxO/Zn0.9Mg0.1O)雙層膜樣品來探討不同Zn0.9Mg0.1O緩衝層的厚度對Zn1-xGdxO在薄膜結構和光學特性的影響,其中鍍膜氧氣壓力為3×10-1 mbar,Gd摻雜的原子比例為1%、3%、8%。
    Zn1-xGdxO鍍膜速率會隨著Gd比例的增加而上升,也會隨著雷射能量的上升而上升。藉由X光光電子能譜測定的Gd摻雜比例皆與配方比例相當接近。X光繞射光譜及拉曼散射光譜顯示所有薄膜皆無雜質或其他晶相產生,代表Gd與Mg成功取代Zn位置。在Gd摻雜濃度變高時,薄膜的粒徑大小持續下降,代表薄膜結晶品質變差;在Mg摻雜的薄膜變薄時,薄膜的粒徑大小持續下降,因其薄膜厚度太薄使其粒徑只能與厚度接近。光致螢光顯示Zn1-xGdxO薄膜的發光都與鋅空缺和鋅間隙有關,而多了一層氧化鎂鋅緩衝層時,會讓Zn1-xGdxO薄膜的缺陷發光強度下降。超導量子干涉磁量儀測定結果顯示所有氧化釓鋅薄膜皆為順磁性。

    Pulsed-laser deposition was applied to grow gadolinium (Gd)-doped ZnO
    (Zn1-xGdxO) thin films on c-sapphire substrate. Gd concentration, substrate temperature, and laser energy fluence were varied, and the deposition rate, structural, optical and magnetic properties were investigated. In addition (Zn1-xGdxO/Zn0.9Mg0.1O) double-layer thin films were investigated for the effect of buffer layer. The relations between buffer layer thin film thickness and structural properties, optical properties of
    (Zn1-xGdxO/Zn0.9Mg0.1O) double layer thin films were studied. The oxygen partial pressure is 3×10-1 mbar. The Gd concentration is 1%, 3% and 8% .
    The deposition rate of Zn1-xGdxO increased with increasing laser energy fluence as well as with increasing Gd concentration. X-ray photoelectron spectroscopy showed the doping density is pretty close to nominal density. X-ray diffraction patterns and Raman-scattering spectra revealed Gd and Mg incorporation into ZnO without secondary phase. As Gd density increased, the grain size of Zn1-xGdxO thin films decreased, meaning that the thin film crystal quality decreased. As Zn0.9Mg0.1O thin film thickness decreased, thin films structural properties decreased, because the grain size of Zn0.9Mg0.1O thin film is limited by its thickness ── the grain size of thin film is close to its thickness. Photoluminescence (PL) spectroscopy showed that all the thin films had zinc interstitials and zinc vancancies. For (Zn1-xGdxO/Zn0.9Mg0.1O) double layer thin films, PL intensity was smaller than that of (Zn1-xGdxO) single layer. Magnetic investigations with a superconducting quantum interference device magnetometer revealed paramagnetism for all Zn1-xGdxO thin films.

    Chapter1 緒論………………………………………………………………………1 Chapter2 背景知識 2.1氧化鋅(ZnO)、氧化鎂(MgO)、釓(Gd)與藍寶石基板(sapphire)性質….….3 2.2脈衝雷射蒸鍍法(pulsed-laser deposition, PLD)……………………….….…6 2.3 表面輪廓儀(α-step)…………………………………………………....…....8 2.4 X光光電子能譜(x-ray photoelectron spectroscopy, XPS)………………..…9 2.5 X光繞射儀(X-ray diffraction, XRD)…………………………………….….11 2.6拉曼散射光譜(Raman-scattering spectroscopy)………………………..…...14 2.7光致螢光(Photo-Luminescence, PL) ……………………………………...17 2.8材料磁性種類介………………………………………………………..........19 Chapter3 實驗過程………………………………………………………………...21 Chapter4結果與討論 4.1速率分析……………………………………………………………………..23 4.2 XPS結果分析………………………………………………………….….....24 4.3 XRD結果分析…………………………………………………………….....26 4.4 Raman結果分析……………………………………………………………..32 4.5 PL結果分析……………………………………………………….……..…..34 4.6 SQUID 結果分析…………………………………………………………....49 Chapter5 結論與展望………………………………………………….………..….41 參考文獻……………………………………………………………….……..……..43

    參考文獻
    [1]駱芳鈺,台灣磁性技術協會會訊,50期,20頁,2004。
    [2]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science. 287, 1019 ,2000.
    [3]Klaus Ellmer, Andreas Klein and Bernd Rech , Transparent Conductive Zinc Oxide, Springer-Verlag, 2008.
    [4]Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
    [5] A. Ohtomo, M. Kawasaki, T. Koida, K.Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl.Phys.lett. 72, 2466 (1998).
    [6]簡志峰,脈衝雷射蒸鍍法蒸鍍氧化鋅及氧化釓鋅薄膜(碩士論文),國立台灣師範大學,2011。
    [7]魏嘉瑩,釓摻雜氧化鋅鋁透明導電薄膜特性分析(碩士論文),國立中央大學,2009。
    [8]Stephen Blundell, Magnetism in Condensed Matter, Oxford University Press, 2001.
    [9]P. P. Murmu, J. Kennedy, B. J. Ruck, G. V. M. Williams, A. Markwitz, S. Rubanov, A. A. Suvorova, J. Mater. Sci. 47, 1119 (2012).
    [10]丁一介,脈衝雷射蒸鍍法製備氧化鏑鋅薄膜的探討:結構、光學與磁性研究(碩士論文),國立台灣師範大學,2014。
    [11]張立信,奈米通訊,19卷4期,17頁,2012。
    [12]Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Modern Physics third edition, David Harris (2005).
    [13]B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction third edition (2001).
    [14]V. Sesha Sai Kumar, J. Nano- Electron. Phys. 5, 02026, (2013).
    [15]A.Khorsand Zak, Solid State Sci 1, 251 (2011).
    [16]Eugene Hecht, Optics fourth edition, Addison-Wesley (2002).
    [17]謝宜暾,氧化鋅摻雜銅及鎳之物性研究(碩士論文),國立臺南大學,2006。
    [18] Hadis Morkoç and Ümit Özgür , Zinc Oxide - Fundamentals, Materials and Device Technology, WILEY-VCH, 2009.
    [19]劉漢鈞,氮化銦奈米柱之光學性質研究(碩士論文),P38, 2006。
    [20] Jinqiu Yu, Lei Cui, Huaqiang He, Shihong Yan, Yunsheng Hu, Hao Wu,
    J. Rare Earth, 32, 1 (2014).
    [21]陳玉鴻,光激發螢光的用途,原理,量測技術,工業技術研究院,2004。
    [22]謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,2005。
    [23]顏世強, 氧化鋅變溫螢光光譜研究(碩士論文)。國立成功大學,2005。
    [24]莊桓嘉,氧化鈥鋅/氧化鋅雙層膜結構之物性研究(碩士論文),國立臺灣師範大學,2014。
    [25]David Halliday and Robert Resnick, Fundamentals of Physics eighth extended edition (2008).

    下載圖示
    QR CODE