研究生: |
郭美如 Kuo, Mei-Ju |
---|---|
論文名稱: |
後設認知的教學成效及其相關變數之分析--以小六及國一數學資優生為對象 An analysis of the effectiveness of a metacognitive instructional program for sixth and seventh grade mathematically gifted students with consideration of related variables. |
指導教授: |
譚克平
Tam, Hak-Ping |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 156 |
中文關鍵詞: | 後設認知 、後設認知教學 、數學解題 、教師引導式發問 、相互教學法 、數學資優生 |
英文關鍵詞: | metacognition, metacognitive instruction, mathematical problem solving, teacher guided questioning, reciprocal teaching, mathematically gifted student |
論文種類: | 學術論文 |
相關次數: | 點閱:564 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的主要有二:一是透過較長時期的後設認知教學,探討後設認知的技巧該如何教導才會有所成效,二是進一步探討後設認知相關的變數有哪些。本研究的研究樣本共23位,主要是國一與小六的數學資優生,他們大部份均有代表台灣參加國際性的小學數學競賽的經驗,之所以選擇他們當研究樣本的原因是因為一般學生可能不容易應付後設認知教學所帶來的心智負荷,故此,本研究希望藉由教導這群學生,初步探討後設認知技巧是否可以被年齡較低的學生習得。為此,本研究一方面綜合考量學生在數學解題與後設認知量表上的表現,從23人中挑選出5位學生進行教導後設認知技巧的教學實驗。另一方面,相對於後設認知相關因素的探討上,依據學生在尋找規律測驗、抽象符號測驗和選拔賽的成績,將他們分成高、低解題能力兩組,其中高解題能力組有12人,低解題能力組有11人,依此分類方式來比較他們在後設認知表現上的差異,藉以瞭解解題能力與後設認知之間的相關性。
在後設認知的教學方面,本研究以「教師引導式發問」和「相互教學法」為主軸,並輔以共同解題、分組討論、學生上台發表…等方式,為教學組學生進行10次、每次約2小時的後設認知導向的數學解題教學。結果顯示教學組的學生在經過後設認知的教學後,在解題表現與後設認知方面皆有略優於其他組的傾向,且教學組的學生,也大都認為經過後設認知的教學後,對他們在計畫解題步驟與檢查方面的能力上都有所增進,此外,他們對後設認知的教學也都持有正向的看法。
而在後設認知相關變數的探討上,高解題能力組無論是在後設認知量表、學習動機量表以及數學信念問卷的得分上,皆有優於低解題能力者的現象。再者,藉由兩次個別的晤談,也發現高解題能力者不論是在解題或是後設認知的表現上,皆比低解題能力者有較佳的表現。其中,在解題方面,高解題能力者比低解題能力者較具有數學思維、組織能力、解題動機…等。在後設認知方面,高解題能力者亦傾向比低解題能力者有更多的評估、計畫、監控以及檢查等行為出現。可見後設認知與解題能力兩者確有相關存在。
至於後設認知與學習動機及數學信念的關係,藉由典型相關分析(Canonical correlation analysis)的結果得知,在前測的後設認知量表中的「自我修正」與學習動機量表中的「成就動機」以及「追求成功」兩個次量表的表現有關;再者,前測的後設認知量表中的「策略運用」則與數學信念問卷中的「數學功用與數學學習的態度」以及「數學信念與做數學的態度」有關。可見後設認知與學習動機及數學信念亦其相關性存在。
根據上述的研究結果與發現,本研究建議進行後設認知的教學宜以長時期的方式來進行,才比較容易深入瞭解學生的學習成效以及教學實驗的效果。再者,後設認知的教學也應該同時考量學生在學習動機與數學信念的發展,才能達到預期的教學成效。此外,在後設認知的評量工具上,宜將一般的後設認知量表和即時的後設認知問卷併用,才能較真正衡量出學生後設認知能力。最後,本研究建議若有興趣進行後設認知教學,宜從「教師引導式的發問」開始進行。
There are two main purposes for this study. The first one is to explore the effectiveness of a teaching experiment of metacognition for a prolonged period. The other is to identify variables that are related to metacognition. There are 23 subjects in this study. Most of them are sixth or seventh graders who are gifted mathematically. The majority of them had participated in international mathematical contests at the primary level. The reason for choosing them as the subjects for this study is out of the consideration the normal students might have too much a cognitive load to learn metacognition as well as problem solving skills. Hence, this study focuses on studying if metacognitive skills could be learned by mathematically gifted students. For this purpose, five students, on one hand, were selected out of the twenty three students and were taught them metacognitive skills. The criteria of selection were based on multiple consideration, including their performance in mathematical problem solving as well as their rating on the metacognitive questionnaire. On the other hand, this study divided the 23 students into the high and low problem solving ability group ( with 12 students in the former and 11 students in the latter ) so as to investigate the relationship between problem-solving ability and metacognition.
" Teacher guided questioning " and " reciprocal teaching " represented the two major methods used to teach metacognition in this study. The instructional duration amounted to 10sessions, each one lasting for 2 hours. In addition, this study also adopted various instructional strategies, such as problem solving by the whole class, group discussion, and allowing the students to demonstrate their problem solving strategy to their classmates. The findings of this study were that students who were taught metacognitive skills not only had better performance, on the average, in mathematical problem solving and metacognition than others, but they also considered themselves as having improved with respect to their planning and checking ability. Besides, they also had positive attitude toward the kind of metacognitive instruction methods and strategies employed in this study.
As regards variables what variables are related to metacognition, it was found that the students with high problem solving ability had better ratings on the mathematical belief, learning motivation, and metacognition questionnaires than the students with low problem solving ability. Moreover, they also had showed better performance in problem solving and metacognition during the two follow-up interviews after all the instruction were completed. In relation to problem solving, it was found that the students with high problem solving ability possessed better mathematical thinking and organizing ability, they were also more motivation in problem solving etc. than the low ability group. They also had the tendency to exhibit more metacognitive behaviors in evaluating, planning, monitoring, and checking their solution process. Consequently, it is believed that there exists a relationship between metacognition and problem-solving ability.
Canonical correlation was need to explore the general relationship between metacognition questionnaire, and the instruments for mathematical belief and motivation. The result showed that the self connection subscale of the metacognition questionnaire was related to a weighted combination of the motivation for achievement and the success of the motivation questionnaire. Furthermore, the strategy subscale of the metacognition questionnaire was forced to the related to a weighted combination of the belief of students in mathematics and mathematical function subscales of the mathematical belief questionnaire. Hence, it is perceived that metacognition is relation and belief in mathematics in one for another.
Based on the above findings, it is suggested that metacognition should be taught for a longer duration to achieve better effect. As for the metacognitive assessment instruments, researchers should adopt both the general and the instantaneous metacognitive questionnaires in order to get a more comprehensive assessment of students' real metacognitive ability.
Finally, it is suggested that any teacher who is interested in metacognitive instruction should consider begining with the " teacher guided questioning " method.
一、中文部份
1.鄭昭明(民85),認知心理學。台北:桂冠。
2.鍾聖校(民86),認知心理學。台北:心理。
3.邱上貞(民78),後設認知研究在輕度視障者教學上的應用。特殊教育季刊, 30,12-16頁。
4.邱上貞(民80),學習策略教學的理論與實際。特殊教育與復健學報,1期,1-49頁。
5.汪榮才(民79),國小六年級資優生與普通生在數學解題中之後設認知行為。臺南師範學院初等教育學系「初等教育學報」,3期,199-243頁。
6.林清山和張景媛(民82),國中生後設認知、動機信念與數學解題策略之關係研 究。教育心理學報,26期, 53-74頁。
7.林清山和張景媛(民83),國中生代數應用題教學策略效果之評估。教育心理學 報,27期,35-62頁。
8.林碧珍(民78),國小學生數學解題的表現及其相關因素的研究。國立台灣師範大學數學研究所碩士論文。未出版。
9.林蕙蓉(民84),國小學童後設認知策略教學對國語科閱讀理解效能之研究。臺南師院學報,28期,271-312頁。
10.吳美滿(民87),波利亞的解題步驟對國中比例單元教學效果之研究。國立台灣師範大學科學教育研究所碩士論文。未出版。
11.施志宜(民87),高低後設認知能力國三學生閱讀地球科學說明文之差異。國立台灣師範大學科學教育研究所碩士論文。未出版。
12.涂金堂(民85),國小學生後設認知與數學解題表現之相關研究。國教學報,8 期,133-164頁。
13.郭汾派(民80),國中生文字符號運算錯誤型態。數學科教學輔導論文集。國立台灣師範大學中等教育輔導委員會印行。
14.陳李綢(民77),學習策略的研究與教學。資優教育季刊,29期,15-24頁。
15.陳李綢(民79),近代後設認知理論的發展與研究趨勢。資優教育季刊,37期, 9-12頁。
16.陳李綢(民80),思考模式、學術經驗與認知策略訓練對大學生後設認知與智力 的影響。教育心理學報,24期 ,67-90頁。
17.陳李綢(民81),國小學男女生後設認知能力與數學作業表現的關係研究。教育心理學報,25期,97-109頁。
18.陳密桃(民79a),後設認知的評估方法。國立高雄師範大學「教育文粹」,20 期,196-209頁。
19.陳慧娟(民83),「策略訓練課程」與「策略及認知監控訓練課程」對增進國小六年級學生斜坡問題認知能力之比較研究暨遷移歷程之分析。教育心理學報,27期,227-257頁。
20.張景媛(民79a),回饋方式目標設定與後設認知對國小學生數學作業表現及測試焦慮之影響。教育心理學報, 23期,189-206頁。
21.張景媛(民79b),不同後設認知能力的大學生在學業成績與認知適應上之差異。中國測驗學會測驗年刊,37輯,143-162頁。
22.張景媛(民79c),後設認知能力與資優教育。資優教育季刊,34期,6-9頁。
23.張景媛(民81),自我調整、動機信念、選題策略與作業表現關係的研究暨自我調整訓練課程效果之評估。教育心理學報,25期,201-243頁。
24.張景媛(民83a),國中生數學學習歷程統整模式之研究。教育心理學報,27期,141-174頁。
25.張景媛(民83b)數學文字題錯誤概念分析及學生建構數學概念的研究。教育心 理學報,27期,175-200頁。
26.張景媛(民83c),國中生數學學習歷程統整模式的驗證及應用:學生建構數學概念的分析及數學文字題教學策略的研究。國立台灣師範大學教育心理與輔導研究所博士論文。未出版。
27.張景媛(民86),國中生之正負向情緒與其後設認知、學習動機之研究。教育心理學報,29期,51-76頁。
28.張新仁(民81),國中地理學習之後設認知研究。行政院國家科學委員會專題研究計畫成果報告。
29.張淑娟(民86),高一學生後設認知能力與數學解題能力關係之研究。國立高雄師範大學數學系碩士班碩士論文。未出版。
30.郭靜姿(民79),學習動機、策略運用與後設認知能力之相關探討及其所建構而成之後設理解模式在資優教學上的運用(上)。資優教育季刊,37期,1-8頁。
31.郭靜姿(民81),閱讀理解訓練方案對於增進高中學生閱讀策略運用與後設認知能力之成效研究。國立臺灣師範大學教育研究所博士論文。未出版。
32.葉明達和柳賢(民87),高一學生數學合作解題與後設認知行為之個案研究。第十四屆科學教育學術研討會暨第十一屆科學教育學會年會會議手冊及短篇論文彙編。
33.楊宗仁(民80),後設認知的源起及其理論。資優教育季刊,38期,16-25頁。
34.劉錫麟(民78),國小高年級學生數學解題歷程及其相關因素的研究。花蓮師院學報,第三期,21-90頁。
35.劉錫麟(民80),數學解題教學新趨勢。國教園地,35-36期,45-46頁。
36.謝豐瑞(民82),數學解題能力的培養。中等教育,44卷第4期,26-37頁。
37.魏麗敏(民84),後設認知學習理論與策略。學生輔導,38期,66-75頁。
38.蘇宜芬(民80),後設認知訓練課程對國小低閱讀能力學生的閱讀理解能力與後設認知能力之影響。國立台灣師範大學教育與心理輔導研究所碩士論文。未出版。
二、英文部份
1. Anderson, J. R. (1995). Cognitive Psychology and its Implications. New York. W.H. Freeman Company.
2. Baker, L., & Brown A. L.(1984). Metacognitive skills and reading. In P.D. Pearson (Ed.). Hankbook of Reading Research.(pp.353-394). New York, Longman.
3. Beyer, B. (1987). Practical strategies for the teaching of thinking.Boston: Allyn and Bacon.
4. Boekaerts, M., Seegers, G., & Vermeer, H.(1995). Solving Mathematics: Where and Why does the Solution Process Go Astray. Educational Studies in Mathematics, 28, 241-262.
5. Borg, W. R. & Gall, M. D.(1983). Educational Research. New York: Longman.
6. Borkowski, J. G., Carr, M.,& Pressly, M.(1987). "Spontaneous" Strategy Use: Perspectives from Metacognition Theory. Intelligence, 12, 57-70.
7. Borkowski, J. G., Johnston, M. B.,& Reid, M. K.(1987). Metacognition, Motivation, and Controlled Performance. In S. J. Ceci(Ed.), Handbook of Cognitive, Social, and Neuropsychological Aspects of Learning Disabilities. (pp.147-173). Hillsdale, NJ: Lawrence Erlbaum Associates.
8. Borkowski, J. G., Estrada, M. T., Milstead, M.,& Hale, C. A.(1989). General Problem-Solving Skills: Relations between Metacognition and Strategic Processing. Learning Disability Quarterly, 12, 57-70.
9. Brown, A. L.,& Smiley S.S.(1977). Rating the importance of structural unit of prose passage: A problem of metacognitive development. Child Development, 48, 1-8.
10. Brown, A. L., & Campione, J. C.(1986). Psychological theory and the study of learning disabilities. American Psychologist, 41, 1059-1068.
11. Brown, A. L.(1987). Metacognition, executive control, self-regulation, and their more mysterious mechanisms. In F.E. Weinert,& R. H. Kluwe (Eds.). Metacognition, Motivation, and Understanding. (pp.21-29). Hillsdale, NJ: Lawrence Erlbaum Associates.
12. Campione, J.C., Brown, A. L., & Connell, M. L.(1989).Metacognition: On the Importance of Understanding What You Are Doing. In R. I. Charles, & E. A. Silver(Eds.), The Teaching and Assessing of Mathematical Problem Solving. (pp.93-114) Lawrence Erlbaum Associates.
13. Carr, M., & Biddlecomb, B. (1998). Metacognition in mathematics from a constructivist perspective. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice. Lawrence Erlbaum Associates . Publishers. Mahwah, New Jersey.
14. Cross, D. R., & Paris, S.G.(1988). Developmental and instructional analyses of children's metacognition and reading comprehension. Journal of Educational Psychology.80(2),131-142.
15. Dekker, R.(1991). Wiskunde leren in kleine heterogene groepen. Academisch Boeken Centrum, De Lier.
16. Dekker, R.(1994). Graphs, small groups and the process of level raising. In A. Antibi(Ed.), Representations graphique et symbolique de la Maternelle al'Universite, Tome 1. CIEAEM, Universite Paul Sabatier, Toulouse, pp. 184-189.
17. Dekker, R., & Elshout-Mohr, M. (1998). A process model for interaction and mathematical level raising . Educational Studies in Mathematics , 36, 303-314.
18. Ericcson, K. A., & Simon, H. A.(1980). Verbal reports as data. Psychological Review, 87, 215-252.
19. Fernandez, M. L., Hadaway, N.,& Wilson, J. W.(1994). Problem Solving: Managing It All. The Mathematics Teacher, Vol.87, No.3, pp. 195- 199. March .
20. Flavell,J.H.(1976). Metacognitive aspects of Problem Solving. In L.B. Resnick(Ed.), The Nature of Intelligence. (pp. 231-235). Hillsdale, NJ: Lawrence Erlbaum Associates.
21. Flavell, J. H., & Wellman, H. M.(1977). Metamemory. In R. V. Kail, & J. W. Hagen (Eds.), Perspectives on the development of memory and cognition. (pp.3-33). Hillsdale, NJ: Lawrence Erlbaum Associates.
22. Flavell, J. H.(1979). Metacognition and Cognitive Monitoring : A new area of cognitive-development inquiry.Aemerican Psychologist, 34(10), 906-911.
23. Flavell, J. H.(1981). Cognitive monitoring. In W. P. Dickson (Ed.), Children's oral communication skills .(pp.35-60). New York: Academic Press.
24. Flavell, J. H.(1987). Speculations about the nature and development of metacognition. In F.E. Weinert & R.H. Kluwe(Eds.), Metacognition, Motivation, and Understanding.(pp. 21-29). Hillsdale, NJ: Lawrence Erlbaum Associates.
25. Gagne', E. D., Yekovich, C. W.,& Yekovich, F. R.(1993). Problem Soving and Reasoning.In E.D. Gagne', C. W. Yekovich, & F.R. Yekovich (Eds.), The cognitive sychology of school learning.(pp209-233). New York: Harper Collins College Publisher.
26. Garner, R.(1988). Metacognition and reading comprehension.(2nd ed.). Norwood, N.J.: Ablex Publishing Corporation.
27. Garofalo, J. & Lester, F. K.(1985). Metacognition, Cognitive Monitoring, and Mathematical Performance. Journal for Research in Mathematics Education, Vol. 16, No.3, 163-176.
28. Garofalo, J.(1987). Metacognition and School Mathematics. Arithmetic Teacher, 34, 22-23. May.
29. Goldin, G. A. (1982). The Measure of Problem-Solving Outcomes. In K. Lester, & J. Garofalo(Eds.), Mathematical Problem Solving Issues in Research.(pp. 87-101). Franklin Institute Press.
30. Gredler, M. E.(1997). Metacognition and problem solving. In M. E. Gredler (Ed.), Learning and Instruction: Theory Into Practice.(3rd. ed) (pp. 175-198) NJ: Prentice-Hall.
31. Henningsen, M., & Stein ,M.K.(1997). Mathematical Tasks and Student Cognition: Classroom-Based Factors that Support and Inhibit High-Level Mathematical thinking and Reasoning. Journal for Research in Mathematics Education, Vol.28, No.5, 524-549.
32. Fortunato, I, Hecht, D., & Tittle, C. K., & Alvarez, L.(1991). Metacognition and problem solving. Arithmetic Teacher, v.39 n4, pp.38-40.
33. Irwin, D. M., & Bushnell, M. M. (1980). Observational strategies for child study. New York: Holt. Rinehart and Winston.
34. Kersh, M. E., & McDonald, J. (1991). How do I solve thee? Let me count the ways!Arithmetric Teacher, v39. n2, pp.38-41.
35. King, A.(1991). Effects of Training in Strategic Questioning on Children's Problem-Solving Performance. Journal of Educational Psychology, Vol.83, No. 3, 307-317.
36. Kilpatrick,J.(1985). A Retrospective Account of the Past 25 Years of Research on Teaching Mathematical Problem Solving. In E.A. Silver(Ed.), Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives.(pp.1-15). NJ: Lawrence Erlbaum Associates.
37. Kilpatrick, J.(1967). Analyzing the solution of word problems in mathematics: An exploratory study. ( Doctoral Dissertation, Stanford University.) University Microfilms Interational.
38. Lester, F. K., Garofalo, J., & Kroll, D. L.(1989). The Role of Metacognition in Mathematical Problem Solving: A Study of Two Grade Seven Classes. [ED 314255]
39. Lester, F. K.(1985). Methodological Considerations In Research on Mathematical Problem-Solving Instruction. In E.A. Silver (Ed.), Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives.(pp.41-69)NJ: Lawrence Erlbaum Associates.
40. Marshall, S. P.(1989). Assessing Problem Solving: A Short-Term Remedy and a Long-Term Solution. In R. I. Charles, & E. A. Silver(Eds.), The Teaching and Assessing of Mathematical Problem Solving. (pp.159-177). Lawrence Erlbaum Associates.
41. Marshall, S. P.(1990). Assessing Knowledge Structures in Mathematics: A Cognitive Science Perspective. In S. Legg, & J. Algina(Eds.), Cognitive Assessment of Language and Math Outcomes.(pp.241-273) .
42. Mayer, R. E.(1992). Thinking, Problem Solving, Cognition. ( 2nd ed.). New York: W.H. Freeman.
43. Mayer, R. E.(1987). Educational Psychology: A Cognitive Approach. HarperCollins Publisher. ( 林清山譯,1991,教育心 理學-認知取向。台北:遠流。)
44. Montague, M.(1992). The Effects of Cognitive and Metacognitive Strategy Instruction on Mathematical Problem Solving of Middle School Students with Learning Disabilities. Journal of Learning Disabilities, Vol. 25, No. 4, pp. 230-248.
45. Montague, M., Applegate, B., & Marquard, K. (1993). Cognitive Strategy Instruction and Mathematical Problem-Solving Performance of Students With Learning Disabilities. Learning Disabilities Research & Practices, 8(4), 223-232.
46. Montague, M.(1997). Cognitive Strategy Instruction in Mathematics for Students with Learning Disabilities. Journal of Learning Disabilities, Vol. 30, No. 2, pp. 164-177.
47. Myers, M., & Paris, S. G.(1978). Children's Metacognition Knowledge about Reading. Journal of Educational psychology, 70(5), 680-690.
48. Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we know: Verbal reports on mental processes. Psychological Review, 84, 231-259.
49. Palincsar, A. S., & Brown, A. L.(1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1, 117-175.
50. Paris, S. G., Newman, R. S., & McVey, k. A.(1982). Learning the functional significance of mnemonic actions: A microgenetic study of strategy acquisition. Journal of Experimental Child Psychology, 34, 490-509.
51. Paris, S. G., & Lindauer, B. K. (1982). The development of cognitive skills during childhood. In B. Wolman (Ed.), Handbook of developmental psychology. Englewood Cliffs, NJ: Prentice-Hall.
52. Polya, G.(1957). How to Solve it. Princeton, NJ: Princeton University Press. (閻育蘇譯,民80,怎樣解題。台北:九章)
53. Owen, E., & Sweller, J.(1989). Should problem solving be used as a learning device in mathematics. Journal for Research in Mathematics Education, 20, 322-328.
54. Resnick, L. B.(1989). Teaching Mathematics as an Ill-Structured Discipline. In R. I. Charles, & E. A. Silver(Eds.), The Teaching and Assessing of Mathematical Problem Solving.(pp.32-60). Lawrence Erlbaum Associates.
55. Schoenfeld, A. H.(1992). Learning to think mathematically: problem solving, cognition, metacognition, and sense making in mathematics. In D. A. Grouws(Ed.), Handbook of Research on Mathematics Teaching and Learning(pp.334-370). Macmillan Publishing Company, Maxwell Macmillan Canada.
56. Schoenfeld, A. H. (1987). What's all the fuss about metacognition? In A.H. Schoenfeld(Ed.), Cognitive Science and Mathematics Education.(pp.189-215). NJ: Hillsdale.
57. Schoenfeld, A. H.(1985a). Mathematical Problem Solving. Academic Press , INC.
58. Schoenfeld, A. H.(1985b). Metacognitive and Epistemological Issues in Mathematical Understanding. In E.A. Silver(Ed.), Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives.(pp.361-379). NJ: Lawrence Erlbaum Associates.
59. Schoenfeld, A. H.(1982). Measures of problem-solving performance and of problem-solving instruction.Journal for Research in Mathematics Eduction,13(1),31-49.
60. Shasha, D. (1988). The Puzzling Adventures of Dr. Ecco. W. H. Freeman and Company. New York.
61. Silver, E.A., Branca, N.A.,& Adams, V.M.(1980). Metacognition: The missing link in problem solving? In R. Karpius(Ed.), Proceeding of the Fourth International Conference for the Psychology of Mathematics .(pp.213-220). Berbeley.
62. Silver, E.A. (1987). Foundations of cognitive theory and research for mathematics problem-solving. In A.H. Schoenfeld(Ed.), Cognitive Science and Mathematics Education.(pp.33-60). NJ:Hillsdale.
63. Skemp, R. R.(1987). The Psychology of Learning Mathematics. Lawrence Erlbaum Associates Inc,. Pulishers. (陳澤民譯,1995 , 數學學習心理學。台北:九章。)
64. Stanic, George, & Kilpatrick, J. (1988). Historical perspective on problem solving in the mathematics curriculum. In Charles, R. I. & Silver, E. A. (Eds.). The Teaching and Assessing of Mathematical Problem Solving. (pp. 1-22). Reston, Va.: National Council of Teacher of Mathematics.
65. Sternberg, R. J.(1996). Cognitive Psychology. Harcourt Brace College Publishers.
66. Sternberg, R. J.(1985). Beyond IQ: A triarchic theory of human intelligence. New York: cambridge University press.
67. Weinert, F. E.(1987). Introduction and Overview: Metacognition and Motivation as Determinants of Effective Learning and Understanding. In F. E. Weinert & R.H. Kluwe(Eds). Metacognition, Motivation, and Understanding.(pp.1-16). Hillsdale, NJ: Lawrence Erlbaum Associates.
68. Wilson, James W., Maria L. Fernandez, and Nelda Hadaway. (1993). Mathematical Problem Solving. In Wilson, P. S. (1993). Research Ideas for the Classroom: High School Mathematics. New York: Macmillan.