研究生: |
黃政嘉 Huang, Chen-Chia |
---|---|
論文名稱: |
工程導向實作訓練對於提升高中生科技素養的影響 The impact of engineering-oriented hands-on training on enhancing technology literacy of high school students |
指導教授: |
丁玉良
Ting, Yu-Liang |
口試委員: | 何靖國 張玉山 丁玉良 |
口試日期: | 2022/01/27 |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 實作訓練 、工程教育 、工程設計 、科技素養測驗 、科技素養 |
英文關鍵詞: | hands-on training, engineering education, engineering design, technology literacy, technology literacy test |
研究方法: | 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200277 |
論文種類: | 學術論文 |
相關次數: | 點閱:100 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究依據十二年國民基本教育科技領域課程綱要,以科技素養為研究主題,針對北部某高中121名學生,分為實驗組與控制組,實驗組採用工程導向實作課程,控制組則採用傳统科技實作課程,進行準實驗研究。探討工程導向實作課程對高中生科技素養之影響。
本研究結果得到以下結論:(1)高中生的科技資訊來源主要是學校課程。(2)高中生一般的科技素養表现為中等偏上,但設計和創新思维能力普遍较弱。(3)工程導向實作課程的實驗组(EOPT组)在各方面的科技素養比傳统科技實作課程的對照组(TTPC组)提高幅度大。(4)EOPT组學生的技術素養表現明顯提升,其中技術能力提高幅度最大。TTPC组學生則在製作和使用工具的能力有穩定表現。(5)兩组學生在技術態度上没有明顯改善。
The quasi-experimental study aimed to investigate the technological literacy on the base of the Curriculum Guidelines of 12-year Basic Education in Technology field. 121 students of a northern high school were divided into an experimental group and a control group. The experimental group used the engineering-oriented hands-on curriculum while the control group used the traditional technology hands-on curriculum. The impact of the engineering-oriented hands-on curriculum on the technological literacy of high school students was explored.
Technological Literacy Test and the SPSS statistical software were used to analyze the differences in technology attitudes, technology knowledge, technology skills, and technology abilities between two groups. The impact of the engineering-oriented hands-on curriculum on the technological literacy of high school students was examined.
The experimental results indicate that (1) The technology information of high school students was mainly from the school curriculum. (2) The technological literacy of high school students was moderately high, but the design and innovative thinking skills were generally weak. (3) The engineering-oriented experimental group (EOPT) showed a greater improvement in all aspects of technological literacy than the traditional technology hands-on control group (TTPC). (4) Students in the EOPT group showed significant improvement in technical literacy, with the greatest improvement in technical skills, while students in the TTPC group showed stable performance in the ability to make and use tools (5) Students in both groups showed no significant improvement in technical attitudes.
一、中文部分
朱耀明(2011)。「動手做」的學習意涵分析—杜威的經驗學習觀點。生活科技教育月刊,44(2),32-43。
余鑑(2003)。工藝教育思想的流變。生活科技教育月刊,36(8),3-11。
李賢哲(2001)。以動手做(DIY)工藝的興趣培養中小學童具科學創造力之人格特質。科學教育,243,2-7。
汪殿杰、巫鍵志、王意蘭、吳致娟(2014)。強調動手實作的科技教育-以臺北市立大同高中為例。中等教育,65,141-151。
林智皓(2007)。樂高(LEGO)動手做教學對國小學童科學創造力影響之研究(碩士論文)。國立台東大學,台東市。
林志忠(1998)。科技素養教育的哲學分析(博士論文)。國立臺灣師範大學教育學系,臺北市。
洪國峰(2016)。國中生的科技素養測驗發展及其表現之研究(博士論文)。國立臺灣師範大學,臺北市。
范斯淳(2016)。高中工程設計取向之課程設計與實驗:跨學科STEM知識的整合與應用(博士論文)。國立臺灣師範大學,臺北市。
范斯淳、楊錦心(2012)。美日科技教育課程及其啟示。教育資料集刊,55,71-102。
張玉山、范斯淳(2010)。福祿貝爾理論在國小生活科技領域教學上之應用。教育資料與研究雙月刊,95,27-58。
教育部(2017)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校:科技領域課程手冊。臺北市:教育部。
教育部(2018)。十二年國民基本教育課程綱要總綱-科技領域。臺北市:教育部。
陳璽宇(2020)。人工智慧素養測驗發展及其與科技素養之相關研究(碩士論文)。國立臺灣師範大學,台北市。
游光昭、韓豐年、徐毅穎、林坤誼(2005)。國中學生科技態度量表之發展。高雄師大學報,19,69-83。
黃雅雯(2010)。美術館應用情境參與式展示設計對兒童學習經驗與成效之研究。科技博物,14(3),21-54。
鄭禛信(2006)。科技創新活動中問題解決歷程之「問題發現」研究-以高中生高溫超導磁浮創意競賽活動為例(碩士論文)。國立高雄師範大學,高雄。
蕭顯勝、洪琬諦、伍建學(2009)。以網路遊戲實施科技創造力教學之研究。藝術學報:表演類(革新版),84,93-116。
賴光真(2016)。分組合作學習歷程學習謬誤之警覺。臺灣教育評論月刊,5(5),92-96。
一、西文部分
Dewey, J. (1929). The quest for certainty: A study of the relation of knowledge and action. New York, NY: Minton, Balch & Company.
Goodman, B. E., Freeburg, E. M., Rasmussen, K., & Meng, D. (2006). Elementary education majors experience hands-on learning in introductory biology. Advances in Physiology Education, 30(4), 195-203.
Hearns, M. K., Miller, B. K., & Nelson, D. L. (2010). Hands-on learning versus learning by demonstration at three recall points in university students. OTJR: Occupation, Participation and Health, 30(4), 169-171.
International Technology and Engineering Educators Association [ITEEA]. (2006). Technological literacy for all. Reston, VA:Author.
International Technology and Engineering Educators Association [ITEEA]. (n.d.). Engineering by Design™ (EbD) a standards-based model program. Retrieved from http://www.iteea.org/EbD/ebd.htm
International Technology and Engineering Educators Association [ITEEA]. (2020). Standards for technological and engineering literacy: The role of technology and engineering in STEM education. Retrieved from https://www.iteea.org/STEL.aspx
Kelley, T. R. (2010). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11.
National Assessment Governing Board(2010). Technology and engineering literacy assessment and item specifications for the 2014 National Assessment of Educational Progress. Retrieved from http://www.edgateway.net/cs/naepsci/view/lib/263.
National Research Council (NRC). (2010). Exploring the intersection of science education and 2lst century skills: A workshop summary.Washington, DC: National Academies Press.
Piaget, J. (1974). The child's conception of quantities. (Pomerans, A.J., Trans.). London: Routledge & Kegan Paul. (Original work published 1941).
Project Lead The Way [PLTW]. (2012). Getting started. Retrieved from http://www.pltw.org/sites/default/files/GettingStarted_2012_0.pdf
Vygotsky, L.S. (1986). Thought and Language, Cambridge, MA: MIT Press.