研究生: |
陳宛忻 Chen, Wan-Xin |
---|---|
論文名稱: |
工程設計取向 STEM 課程發展研究—運用機械手臂以提升高中生學習三角函數的興趣 Engineering-Oriented STEM Curriculum Development Research: Using Robotic Arms to Enhance High School Students' Interest in Learning Trigonometric Functions |
指導教授: |
丁玉良
Ting, Yu-Liang |
口試委員: |
丁玉良
Ting, Yu-Liang 曾騰輝 Tseng, Teng-Hui 蔡欣玶 Tsai, Shin-Ping |
口試日期: | 2024/06/11 |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 科技與工程教育 、課程發展 、STEM 教育 、工程設計流程 、行動研究 |
英文關鍵詞: | Technology and engineering education, Curriculum development, STEM education, Engineering design process, Action research |
研究方法: | 行動研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202401083 |
論文種類: | 學術論文 |
相關次數: | 點閱:291 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發以工程設計為導向的STEM課程,並運用機械手臂作為教學工具,以提升高中生學習數學的興趣。通過行動研究法,結合專題導向學習和工程設計流程,進行五次教學活動,期望透過不斷反思和改進,達到有效提升學生學習興趣及知識整合能力的目標。課程之開發採用ADDIE模式進行,並考量認知負荷理論和鷹架理論。研究通過對質性與量化資料的分析,評估學生在課程前後對STEM的態度和興趣變化,並探討課程改良過程與原因。根據對跨領域知識整合想法調查問卷中,前測92、後測87則回覆,STEM態度問卷的74個有效樣本,以及5個版本的教學簡報與學習單之歸類、分析與整理,得出之研究結果顯示,本課程使學生發現數學的實用性與趣味性,並激發其學習動力和探索欲望,而在提升對數學與自然科學的學習興趣上,整體情況達顯著(p<0.05)。教材改進包括增加輔助理解的多媒體或醒目標示、使用清晰明確的詞句、將學習內容分段並與實作穿插進行,以及刪減無關內容。根據研究結果,建議工程設計取向STEM課程應先讓學生理解問題,再引入相關知識以激發好奇心。課程應聚焦於學生已有和正在學習的重要知識,並與實作緊密連結。教師應多與不同領域交流,提升課程效果。最後,建議將活動擴展為一學期,讓學生有充足時間體驗和學習,提高STEM素養。
This study aims to develop an engineering design-oriented STEM curriculum using robotic arms as a teaching tool to enhance high school students' interest in mathematics. Through action research, combined with project-based learning and the engineering design process, five teaching activities were conducted to achieve the goal of effectively increasing students' learning interest and knowledge integration ability through continuous reflection and improvement. The curriculum development followed the ADDIE model, considering cognitive load theory and scaffolding theory.The study evaluated changes in students' attitudes and interest in STEM before and after the course through qualitative and quantitative data analysis, exploring the reasons and process of curriculum improvement. The results were derived from pre- and post-course questionnaires on interdisciplinary knowledge integration (92 and 87 responses, respectively), 74 valid responses from the STEM attitude survey, and analysis of five versions of teaching presentations and worksheets. The findings indicate that the curriculum significantly improved students' perception of the practicality and interest of mathematics, stimulating their motivation and desire for exploration. The overall improvement in interest in mathematics and natural sciences was significant (p<0.05).Curriculum improvements included adding multimedia aids and prominent markers to assist understanding, using clear and precise language, segmenting learning content with practical activities, and removing irrelevant content. Based on the research results, it is recommended that engineering design-oriented STEM curricula should first allow students to understand the problem before introducing relevant knowledge to spark curiosity. The curriculum should focus on important knowledge that students already possess and are currently learning, closely linking it with practical activities. Teachers should engage in cross-disciplinary collaboration to enhance the curriculum's effectiveness. Finally, it is suggested to extend the activities into a semester-long course, providing students ample time to experience and learn, thereby enhancing STEM literacy.
李涵鈺(2014年7月)。科技是發展還是阻礙學生學習?—「國際認知負荷理論工作坊」側寫。國家教育研究院電子報,92。檢自:https://epaper.naer.edu.tw/edm.php?eg_name=%E7%A0%94%E7%BF%92%E5%88%86%E4%BA%AB&edm_no=92&content_no=2263
周芬美、段曉林(2019)。以自我效能激發策略融入 STEM 統整活動對國中學生STEM 學習效能之探討。科技與人力教育季刊,5(4),26-49。https://doi.org/10.6587/JTHRE.201906_5(4).0002
林坤誼(2014)。 STEM 科際整合教育培養理論與實務的科技人才。科技與人力教育季刊,1(1),1。
林坤誼(2018)。STEM 教育在台灣推行的現況與省思。香港青年研究學報,21(1),1-9。
林坤誼(2021)。STEM 跨領域教學合作設計模式與有效失敗經驗設計之研究。人文社會科學研究:教育類,15(2),1-18。https://doi.org/10.6618/HSSRP.202106_15(2).1
林佩璇(2002)。行動研究在課程發展中的理念與實踐。課程與教學,5(2),81-96+156。http://dx.doi.org/10.6384/CIQ.200204.0081
范斯淳(2016)。高中工程設計取向之課程設計與實驗:跨學科STEM知識的整合與應用(系統編號:104NTNU5036003)[博士論文,國立臺灣師範大學]。臺灣碩博士論文知識加值系統。
范斯淳、游光昭(2016)。科技教育融入STEM課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。https://doi.org/10.6209/JORIES.2016.61(2).06
徐新逸(2001)。如何利用網路幫助孩子成為研究高手--網路專題式學習與教學創新。臺灣教育,607,25-34。
陳艾文(2021)。陽光國小STEAM主題統整課程實施之個案研究(系統編號:109NPTU0212019)[碩士論文,國立屏東大學]。臺灣碩博士論文知識加值系統。
陳向明(1999)。什麼是”行動研究”。教育研究與實驗,2,60-67。
教育部(2018)。十二年國民基本教育課程綱要科技領域。https://www.naer.edu.tw/upload/1/16/doc/816/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%B0%91%E5%9F%BA%E6%9C%AC%E6%95%99%E8%82%B2%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E5%9C%8B%E6%B0%91%E4%B8%AD%E5%AD%B8%E6%9A%A8%E6%99%AE%E9%80%9A%E5%9E%8B%E9%AB%98%E7%B4%9A%E4%B8%AD%E7%AD%89%E5%AD%B8%E6%A0%A1-%E7%A7%91%E6%8A%80%E9%A0%98%E5%9F%9F.pdf
張仁家、林癸妙(2019)。美國 STEM 教育的發展沿革與經驗─以俄亥俄州為例。科技與人力教育季刊,5(4),1-25。
張庭綸(2021)。我國 STEM 跨領域教學現況與省思。臺灣教育評論月刊,10(12),59-63。https://www.airitilibrary.com/Article/Detail/P20130114001-202112-202112030011-202112030011-59-63
張哲寰(2022)。機械工程概論。台北:全華。https://www.opentech.com.tw/try/g8q6e2022624112804/urjyrku2pp2022624112 804.pdf
駐澳大利亞代表處教育組(2017年12月18日)。澳洲教育暨訓練部新政:訓練校長STEM課程與教學領導人。臺灣教育研究資訊網。https://teric.naer.edu.tw/wSite/ct?ctNode=647&mp=teric_b&xItem=2000285
駐紐約辦事處教育組(2016年8月9日)。紐約州推動STEM激勵計畫,培養及留住高科技人才。臺灣教育研究資訊網。https://teric.naer.edu.tw/wSite/ct?ctNode=647&mp=teric_b&xItem=1888974
駐休士頓辦事處教育組(2015年6月16日)。美國大學理事會將授予學生STEM課程憑證。臺灣教育研究資訊網。https://teric.naer.edu.tw/wSite/ct?ctNode=647&mp=teric_b&xItem=1833415
駐歐盟兼駐比利時代表處教育組(2016年1月26日)。歐洲致力推動STEM教育。臺灣教育研究資訊網。https://teric.naer.edu.tw/wSite/ct?ctNode=647&mp=teric_b&xItem=1842108
駐香港臺北經濟文化辦事處派駐人員(2017年1月4日)。港教育局邀請4所「專業發展學校」,每校負責助3所伙伴學校發展STEM。臺灣教育研究資訊網。https://teric.naer.edu.tw/wSite/ct?ctNode=647&mp=teric_b&xItem=1900831
鄭如雯(2008)。專題式學習探析及其在教育上的啟示。學校行政雙月刊,(57),147-164。http://dx.doi.org/10.6423/HHHC.200809.0147
蔡清田(2000)。教育行動研究。台北:五南。
蔡進雄(2019年2月)。各國推動STEM教育的新動態。國家教育研究院電子報,180。檢自:https://epaper.naer.edu.tw/edm.php?grp_no=3&edm_no=180&content_no=3176
鍾華栩、邱柏升(2018年5月18日)。探討專題式教學融入STEM教育之情緒表現影響-以國小運算思維課程為例〔論文發表〕。2018第七屆工程、技術與科技教育學術研討會。臺南市,臺灣。https://doi.org/10.6571/SCETE.201805.0012
Asunda, P. A. (2012). Standers for technological literacy and STEM education delivery through career and technical education programs. Journal of Technology Education, 23(2), 44-60. https://doi.org/10.21061/jte.v23i2.a.3
Bybee, R. W. (2010). Advancing STEM Education: A 2020 Vision. Technology and Engineering Teacher, 70(1), 30-35. https://0-www.proquest.com.opac.lib.ntnu.edu.tw/scholarly-journals/advancing-stem-education-2020-vision/docview/853062675/se-2?accountid=14228
Carr, W., & Kemmis, S. (1986). Becoming critical: Education, knowledge and action research. Flamer.
Chien, Y. H., Liu, C. Y., Chan, S. C., & Chang, Y. S. (2023). Engineering design learning for high school and college frst-year students in a STEM battlebot design project. International Journal of STEM Education, 10 (10). https://doi.org/10.1186/s40594-023-00403-0
Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101 (4), 738-797. https://doi.org/10.1002/j.2168-9830.2012.tb01127.x
Daugherty, M. K. (2009). The “T” and “E” in STEM. In ITEEA (Ed.), The overlooked STEM imperatives: Technology and engineering (pp.18-25). Reston, VA: ITEEA.
Donna, J. D. (2012). A Model for Pr A Model for Professional De essional Development t elopment to Promote Engineering omote Engineering Design as an Integrative Pedagogy within STEM Education. Journal of Pre-College Engineering Education Research, 2 (2), 1-8. https://doi.org/10.5703/1288284314866
Gao, X., Li, P., Shen, J., & Sun, H. (2020). Reviewing assessment of student learning in interdisciplinary STEM education. International Journal of STEM Education, 7 (24). https://doi.org/10.1186/s40594-020-00225-4
Grundy, S., & Kemmis. S. (1981). Educational action research in Australia: The state of the art (an overview). In S. Kemmis & R. McTaggart (1988), (Eds.), The Action research reader ( 3rd ed., pp. 321-334). Victoria: Deakin University.
Huang, B., Jong, M. S. Y., Tu, Y. F., Hwang, G. J., Chai, C. S., & Jiang, M. Y. C. (2022). Trends and exemplary practices of STEM teacher professional development programs in K-12 contexts: A systematic review of empirical studies. Computers & Education, 189. https://doi.org/10.1016/j.compedu.2022.104577
Lantz, H. B. (2009). Science, Technology, Engineering, and Mathematics (STEM) Education What Form? What Function? https://www.uastem.com/wp-content/uploads/2012/08/STEMEducationArticle.pdf
Lesha, J. (2014). Action Research in Education. European Scientific Journal, 10(13), 379-386. https://eujournal.org/index.php/esj/article/viewFile/3363/3127
Lin, K.Y., Wu, Y.T., Hsu, Y.T., & Williams, P. J. (2021). Effects of infusing the engineering design process into STEM project-based learning to develop preservice technology teachers’ engineering design thinking. International Journal of STEM Education, 8 (1). https://doi.org/10.1186/s40594-020-00258-9
Lin, K.Y., Yeh, Y. F., Hsu, Y. S., Wu, J. Y., Yang, K. L., & Wu, H. K. (2022). STEM education goals in the twenty-frst century: Teachers’ perceptions and experiences. International Journal of Technology and Design Education 33, 479-496. https://doi.org/10.1007/s10798-022-09737-2
Linh, N. Q., & Huong, L. T. T. (2021). Engineering design process in STEM education: an illustration with the topic “wind energy engineers”. Journal of Physics: Conference Series, 1835. https://doi.org/10.1088/1742-6596/1835/1/012051
McLure, F. I., Tang, K. S., & Williams, P. J. (2022). What do integrated STEM projects look like in middle school and high school classrooms? A systematic literature review of empirical studies of iSTEM projects. International Journal of STEM Education, 9 (73). https://doi.org/10.1186/s40594-022-00390-8
Mills, J. E., & David, F. T. (2003). Engineering education—is problem-based or project-based learning the answer? Australasian Journal of Engineering Education, online publication 2003-04.
Kayan-Fadlelmula, F., Sellami, A., Abdelkader, N. et al. A systematic review of STEM education research in the GCC countries: trends, gaps and barriers. International Journal of STEM Education, 9 (2). https://doi.org/10.1186/s40594-021-00319-7
Kelley, T. R. (2008). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11. https://0-www.proquest.com.opac.lib.ntnu.edu.tw/scholarly-journals/staking-claim-t-stem/docview/819725406/se-2?accountid=14228
Lantz Jr., H. B. (2009). Science, technology, engineering, and mathematics (STEM) education what form? What function? Retrieved from https://dornsife.usc.edu/assets/sites/1/docs/jep/STEMEducationArticle.pdf
Laughlin, W. (2023). Developing an Elementary STEM Class and Curriculum (Order No. 30490617). Available from ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. (2811363929). https://0-www.proquest.com.opac.lib.ntnu.edu.tw/dissertations-theses/developing-elementary-stem-class-curriculum/docview/2811363929/se-2
Maeda, J. (2013). STEM + ART = STEAM. The STEAM Journal, 1 (1), 1-3. Retrieved from https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1033&context=steam
Margot, C. K., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6 (2). https://doi.org/10.1186/s40594-018-0151-2
McCutcheon, G. & Jung, B. (1990). Alternative perspectives on Action Research. Theory into practice, 24, 144-151. https://www.jstor.org/stable/1476916
National Research Council. (2009). Engineering in K–12 education: Understanding the status and improving the prospects. National Academies Press.
National Science Foundation (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. Report from directorate for education and human resources of national science foundation. Retrived from https://files.eric.ed.gov/fulltext/ED404158.pdf
Rolling, J. H., Jr. (2016). Reinventing the STEAM engine for Art + Design Education. Art Education, 69(4), 4-7. https://doi.org/10.1080/00043125.2016.1176848
Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Pauw, J. B., Dehaene, W., Deprez, J., Cock, M. D., Hellinckx, L., Langie, G., Struyven, K., Velde, D. V., Petegem, P. V., Depaepe, F. (2018). Integrated STEM Education: A Systematic Review of Instructional Practices in Secondary Education. European Journal of STEM Education, 3(1). https://doi.org/10.20897/ejsteme/85525
Thomas, J. W. (2000). A review of research on project-based learning. Retrieved from http://www.bobpearlman.org/BestPractices/PBL_Research.pdf
Tsai, S.-P., Ting, Y.-L. & Chu. L. (2023). Development and preliminary validation of the middle school students’ attitudes toward STEM learning scale. Research in Science & Technological Education. https://doi.org/10.1080/02635143.2023.2235291
Wells, J. G. (2016). PIRPOSAL Model of Integrative STEM Education: Conceptual and Pedagogical Framework for Classroom Implementation. Technology and Engineering Teacher, 75(6), 12-19.
Wan, Z.-H., So, W.M.W. & Zhan, Y. (2022). Developing and Validating a Scale of STEM Project-Based Learning Experience. Research in Science Education, 52, 599-615. https://doi.org/10.1007/s11165-020-09965-3