研究生: |
吳民聰 Ming-Chong Ng |
---|---|
論文名稱: |
應用斑馬魚作為研究端腦突觸可塑性及智能障礙疾病的模式 The zebrafish as a model for studying of telencephalic synaptic plasticity and mental retardation |
指導教授: |
呂國棟
Lu, Kwok-Tung |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 斑馬魚 、端腦 、突觸可塑性 、智能障礙 、長期增益效應 、長期抑制效應 |
英文關鍵詞: | Zebrafish, Telencephlaon, Synaptic plasticity, Mental retardation, Long-term potentiation, Long-term depression |
論文種類: | 學術論文 |
相關次數: | 點閱:435 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硬骨魚類的端腦在學習與記憶的形成過程中扮演著重要的角色,其中又以端腦背側的外側區(Dl)與中側區(Dm)最為關鍵。利用螢光追蹤方法可發現,將螢光染劑置入D1區後,螢光物質會由Dl往Dm傳遞,這現象意味著兩者之間的神經纖維有緊密相連的關係,但目前探討Dl-Dm間突觸傳遞現象的研究還非常稀少。斑馬魚是一種廣泛應用於探討藥物成癮、焦慮以及學習和記憶等研究的模式動物。本論文的研究目的之一即以電生理技術,探討在斑馬魚端腦中Dl-Dm投射路徑的神經傳遞與突觸可塑(synaptic plasticity)現象。從結果可觀察到,在Dl給予一次電刺激能引發Dm產生一個負電位之電場電位(field potential, FP),且該FP能被AMPA/kainate受器拮抗劑CNQX、0.5 mM Ca 2+、8.0 mM Mg 2+ 及TTX (0.5 μM)所阻斷;相反的,在無Mg 2+的人工腦脊髓液以及bicuculline中FP則能被提升並引發神經的猝發(bursting)現象。以上結果意味著興奮性與抑制性的神經傳遞作用皆可能具調節神經突觸的功能。為了探究這假說,本論文進一步探討了突觸可塑現象中的長期增益效應(LTP)與長期抑制效應(LTD) 。由結果發現,連續三次高頻刺激(每秒100Hz)或投予腺苷酸環化酶啟動劑Forskolin (50 μM) 15分鐘後皆可引發LTP現象,前者為NMDA受器依賴性LTP,而後者需要extracellular related-signal kinase (ERK)的參與。此外,投予代謝型谷氨酸受體興奮劑DHPG (25 μM) 10分鐘後,則會引發持續至少1小時的LTD現象 。由此可知,斑馬魚端腦Dl與Dm間的突觸連結為端腦突觸可塑性的關鍵角色,也在探討斑馬魚學習與記憶之神經機轉上提供了一個新的電生理模式。另外,斑馬魚在發生遺傳學等相關人類疾病的研究中也已成為不可或缺的動物模式。X染色體脆折症(Fragile X syndrome, FXS)是發生率較高的人類遺傳性智能遲滯疾病,伴隨著外型異常、認知功能以及行為障礙等症狀。FXS是由於FMR1基因發生突變造成其蛋白FMRP缺失所致,建立FXS的動物模式將有助於我們進一步瞭解致病的細胞與分子機制。因此,本論文的另一研究目的即為利用FMR1基因缺失斑馬魚,探究FMRP在行為及神經突觸可塑性中所扮演的角色。實驗結果顯示,成年斑馬魚因缺乏FMR1基因表達,而產生低焦慮、過動和抑制性逃避性學習障礙現象。而在電生理上,FMRP的缺失對於突觸傳遞功能並無明顯影響,但在突觸可塑性方面,相較於對照組,FMR1剔除斑馬魚端腦LTP的強度會減弱,相反的LTD則增強。綜合此研究的各項重要發現,我們認為FMR1基因剔除斑馬魚在未來應用上,除有助於我們瞭解FXS的致病機轉外,更能協助治療性藥物的開發。
In teleost fishes, the lateral (Dl) and medial (Dm) division of the dorsal telencephalon are important in learning and memory formation. Tract-tracing studies revealed that neural connections are formed between these regions via afferent Dl fibers projecting to the Dm. However, research analyzing Dl–Dm synaptic transmission is scant. Ray-finned zebrafish has been a widely used model organism in behavioral research such as addiction, anxiety, and in learning and memory. Purpose of present dissertation was to investigate neurotransmission and synaptic plasticity in projections from the Dl to the Dm in zebrafish using electrophysiological techniques. The results demonstrated that electrical stimulation of the Dl division evoked a negative field potential (FP) in the Dm division. In addition, pharmacological data showed that FP in the Dm division could be inhibited by application of the AMPA/kainate receptor antagonist, CNQX (5μM), 0.5 mM Ca 2+ and 8.0 mM Mg 2+ and TTX (0.5 μM). In contrast, Mg2+ free aCSF and bicuculline upon synaptic responses and prolonged bursting activity with multiple spikes in the Dm division. These results suggest that both glutamatergic and GABAergic transmission play a role in modulation of synaptic function. To test this hypothesis, we analyzed two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD). In this study, NMDAR-dependent LTP, induced through the application of three trains of high frequency stimulation (HFS; 100 Hz for 1 s). Moreover, a brief application of Forskolin (50μM, 15 min), an adenylyl cyclase activator, can lead to a long-lasting potentiation of synaptic transmission via activation of extracellular related-signal kinase (ERK). LTD is opposite effect to LTP, the application of DHPG, group I mGluR agonist (25 μM for 10 min) induced LTD, which lasted for at least 1 h. Our results suggest that the intratelencephalic connection between Dl and Dm may play an important role in the synaptic plasticity of the zebrafish telencephalon. It also provides a new electrophysiological model for studying the neural mechanisms underlying learning and memory in zebrafish. Fragile X syndrome (FXS), the most frequent inherited form of human mental retardation characterized by the physical, cognitive impairment and behavioral problems, is caused by silencing of fmr1 transcription, and absence of the FMR1 protein (FMRP). Recently, the animals models of FXS have been greatly facilitated the investigation of molecular and cellular mechanism of this loss-of-function disorder. The present study is aimed to further characterize the role of FMRP in behavior and synaptic function by using fmr1 knockout zebrafish. On adult zebrafish, we found that fmr1 knockout animals to produce anxiolytic-like responses with increased exploratory behavior in light/dark and open-field tests, and avoidance learning impairment. Furthermore, electrophysiological recordings from telencephalic slice preparation of knockout fishes displayed markedly reduced long-term potential and enhanced long-term depression as compared to wild-type fishes, however, basal glutamatergic transmission and presynaptic function at the Dl-Dm synapse was remains normal. Taken together, our study suggests that zebrafish has valuable potential as a complementary vertebrate model to study the molecular pathogenesis of the FXS.
Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88:615-626.
Abitbol M, Menini C, Delezoide AL, Rhyner T, Vekemans M, Mallet J (1993) Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nat. Genet. 4:147-153.
Alfaro JM, Ripoll-Gomez J, Burgos JS (2011) Kainate administered to adult zebrafish causes seizures similar to those in rodent models. Eur. J. Neurosci. 33:1252-1255.
Alger BE, Teyler TJ (1976) Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res. 110:463-480.
Ashley CT, Jr., Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563-566.
Baba Y, Uitti RJ (2005) Fragile X-associated tremor/ataxia syndrome and movements disorders. Curr. Opin. Neurol. 18:393-398.
Bakker CE, Verheij C, Willemsen R, van der Helm R, Oerlemans F, Vermey M, Bygrave A, Hoogeveen AT, Oostra BA, Reyniers E (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 78:23-33.
Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell. Growth Differ. 12:397-408.
Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201-214.
Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu. Rev. Neurosci. 19:437-462.
Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, von Zastrow M, Malenka RC (2000) Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat. Neurosci. 3:1291-1300.
Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE (2000) Synaptic plasticity in the human dentate gyrus. J. Neurosci. 20:7080-7086.
Blank M, Guerim LD, Cordeiro RF, Vianna MR (2009) A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol. Learn. Mem. 92:529-534.
Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39.
Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232:331-356.
Braford MR, Jr. (1995) Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or not? Brain Behav. Evol. 46:259-274.
Brigman JL, Wright T, Talani G, Prasad-Mulcare S, Jinde S, Seabold GK, Mathur P, Davis MI, Bock R, Gustin RM, Colbran RJ, Alvarez VA, Nakazawa K, Delpire E, Lovinger DM, Holmes A (2010) Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J. Neurosci. 30:4590-4600.
Broglio C, Rodriguez F, Gomez A, Arias JL, Salas C (2010) Selective involvement of the goldfish lateral pallium in spatial memory. Behav. Brain Res. 210:191-201.
Broutman G, Baudry M (2001) Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus. J. Neurosci. 21:27-34.
Brown WT, Jenkins EC, Friedman E, Brooks J, Wisniewski K, Raguthu S, French J (1982) Autism is associated with the fragile-X syndrome. J. Autism Dev. Disord. 12:303-308.
Budimirovic DB, Kaufmann WE (2011) What can we learn about autism from studying fragile X syndrome? Dev. Neurosci. 33:379-394.
Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12:4224-4233.
Carroll RC, Beattie EC, von Zastrow M, Malenka RC (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2:315-324.
Chandroo K, Duncan I, Moccia R (2004) Can fish suffer?: perspectives on sentience, pain, fear and stress. Appl. Anim. Behav. Sci. 86:225-250.
Cheever A, Ceman S (2009) Phosphorylation of FMRP inhibits association with Dicer. RNA 15:362-366.
Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Gene. Dev. 19:1288-1293.
Coan EJ, Saywood W, Collingridge GL (1987) MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci. Lett. 80:111-114.
Coffee B, Zhang F, Warren ST, Reines D (1999) Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat. Genet. 22:98-101.
Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334:33-46.
Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. P. Natl. Acad. Sci. USA. 94:5401-5404.
Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. P. Natl. Acad. Sci. USA. 98:11691-11696.
Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001) Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107:489-499.
Davis RL, Cherry J, Dauwalder B, Han PL, Skoulakis E (1995) The cyclic AMP system and Drosophila learning. Mol. Cell. Biochem. 149-150:271-278.
de Diego-Otero Y, Romero-Zerbo Y, el Bekay R, Decara J, Sanchez L, Rodriguez-de Fonseca F, del Arco-Herrera I (2009) Alpha-tocopherol protects against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency. Neuropsychopharmacology 34:1011-1026.
den Broeder MJ, van der Linde H, Brouwer JR, Oostra BA, Willemsen R, Ketting RF (2009) Generation and characterization of FMR1 knockout zebrafish. PLoS One 4:e7910.
Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL (1993) The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat. Genet. 4:335-340.
Di Filippo M, Picconi B, Tantucci M, Ghiglieri V, Bagetta V, Sgobio C, Tozzi A, Parnetti L, Calabresi P (2009) Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory. Behav. Brain Res. 199:108-118.
Dockendorff TC, Su HS, McBride SM, Yang Z, Choi CH, Siwicki KK, Sehgal A, Jongens TA (2002) Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34:973-984.
Duffy SN, Craddock KJ, Abel T, Nguyen PV (2001) Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn. Mem. 8:26-34.
Duran E, Ocana FM, Gomez A, Jimenez-Moya F, Broglio C, Rodriguez F, Salas C (2008) Telencephalon ablation impairs goldfish allocentric spatial learning in a "hole-board" task. Acta. Neurobiol. Exp. 68:519-525.
Eadie BD, Zhang WN, Boehme F, Gil-Mohapel J, Kainer L, Simpson JM, Christie BR (2009) Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus. Neurobiol. Dis. 36:361-373.
Edwards JG, Michel WC (2002) Odor-stimulated glutamatergic neurotransmission in the zebrafish olfactory bulb. J. Comp. Neurol. 454:294-309.
Edwards JG, Michel WC (2003) Pharmacological characterization of ionotropic glutamate receptors in the zebrafish olfactory bulb. Neuroscience 122:1037-1047.
Feng Y, Absher D, Eberhart DE, Brown V, Malter HE, Warren ST (1997) FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol. Cell 1:109-118.
Fitzjohn SM, Kingston AE, Lodge D, Collingridge GL (1999) DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 38:1577-1583.
Fitzjohn SM, Palmer MJ, May JE, Neeson A, Morris SA, Collingridge GL (2001) A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J. Physiol. 537:421-430.
Folgueira M, Anadon R, Yanez J (2004) Experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). II: Dorsal area and preoptic region. J. Comp. Neurol. 480:204-233.
Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, Verkerk AJ, Holden JJ, Fenwick RG, Jr., Warren ST, et al. (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67:1047-1058.
Fukunaga K, Muller D, Ohmitsu M, Bako E, DePaoli-Roach AA, Miyamoto E (2000) Decreased protein phosphatase 2A activity in hippocampal long-term potentiation. J. Neurochem. 74:807-817.
Ganz J, Kaslin J, Freudenreich D, Machate A, Geffarth M, Brand M (2012) Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J. Comp. Neurol. 520:633-655.
Garber K, Smith KT, Reines D, Warren ST (2006) Transcription, translation and fragile X syndrome. Curr. Opin. Genet. Dev. 16:270-275.
Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, Wang YT (2010) Hippocampal long-term depression is required for the consolidation of spatial memory. P. Natl. Acad. Sci. USA. 107:16697-16702.
Goebel-Goody SM, Wilson-Wallis ED, Royston S, Tagliatela SM, Naegele JR, Lombroso PJ (2012) Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. Genes. Brain Behav.
Gomez Y, Vargas JP, Portavella M, Lopez JC (2006) Spatial learning and goldfish telencephalon NMDA receptors. Neurobiol. Learn. Mem. 85:252-262.
Goshen I, Avital A, Kreisel T, Licht T, Segal M, Yirmiya R (2009) Environmental enrichment restores memory functioning in mice with impaired IL-1 signaling via reinstatement of long-term potentiation and spine size enlargement. J. Neurosci. 29:3395-3403.
Gozlan H, Khazipov R, Diabira D, Ben-Ari Y (1995) In CA1 hippocampal neurons, the redox state of NMDA receptors determines LTP expressed by NMDA but not by AMPA receptors. J. Neurophysiol. 73:2612-2617.
Grossman AW, Aldridge GM, Weiler IJ, Greenough WT (2006) Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J. Neurosci. 26:7151-7155.
Hagerman PJ, Hagerman RJ (2004) Fragile X-associated tremor/ataxia syndrome (FXTAS). Ment Retard Dev Disabil Res. Rev. 10:25-30.
Hagerman RJ (2006) Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J. Dev. Behav. Pediatr. 27:63-74.
Harris EW, Ganong AH, Cotman CW (1984) Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 323:132-137.
Helm RVD, Oerlemans F, Hoogeveen T, Oostra BA (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 78:23-33.
Henze DA, Urban NN, Barrionuevo G (1997) Origin of the apparent asynchronous activity of hippocampal mossy fibers. J. Neurophysiol. 78:24-30.
Hinds HL, Ashley CT, Sutcliffe JS, Nelson DL, Warren ST, Housman DE, Schalling M (1993) Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nat. Genet. 3:36-43.
Hinton VJ, Brown WT, Wisniewski K, Rudelli RD (1991) Analysis of neocortex in three males with the fragile X syndrome. Am. J. Med. Genet. 41:289-294.
Hu H, Qin Y, Bochorishvili G, Zhu Y, van Aelst L, Zhu JJ (2008) Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile X syndrome. J. Neurosci. 28:7847-7862.
Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. P. Natl. Acad. Sci. USA. 99:7746-7750.
Huesa G, Anadon R, Yanez J (2006) Topography and connections of the telencephalon in a chondrostean, Acipenser baeri: an experimental study. J. Comp. Neurol. 497:519-541.
Iezzi E, Suppa A, Conte A, Li Voti P, Bologna M, Berardelli A (2011) Short-term and long-term plasticity interaction in human primary motor cortex. Eur. J. Neurosci. 33:1908-1915.
Inoue S, Shimoda M, Nishinokubi I, Siomi MC, Okamura M, Nakamura A, Kobayashi S, Ishida N, Siomi H (2002) A role for the Drosophila fragile X-related gene in circadian output. Curr. Biol. 12:1331-1335.
Izquierdo I, da Cunha C, Rosat R, Jerusalinsky D, Ferreira MB, Medina JH (1992) Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Behav. Neural. Biol. 58:16-26.
Kameyama K, Lee HK, Bear MF, Huganir RL (1998) Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21:1163-1175.
Kanterewicz BI, Urban NN, McMahon DBT, Norman ED, Giffen LJ, Favata MF, Scherle PA, Trzaskos JM, Barrionuevo G, Klann E (2000) The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J. Neurosci. 20:3057-3066.
Kelleher RJ, 3rd, Bear MF (2008) The autistic neuron: troubled translation? Cell 135:401-406.
Kim YH, Lee Y, Kim D, Jung MW, Lee CJ (2010) Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neurosci. Res. 67:156-161.
Kim YJ, Nam RH, Yoo YM, Lee CJ (2004) Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci. Lett. 355:29-32.
Kitajima T, Hara K (1990) A model of the mechanisms of long-term potentiation in the hippocampus. Biol. Cybern. 64:33-39.
Koekkoek SK, Yamaguchi K, Milojkovic BA, Dortland BR, Ruigrok TJ, Maex R, De Graaf W, Smit AE, VanderWerf F, Bakker CE, Willemsen R, Ikeda T, Kakizawa S, Onodera K, Nelson DL, Mientjes E, Joosten M, De Schutter E, Oostra BA, Ito M, De Zeeuw CI (2005) Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47:339-352.
Koyama M, Kinkhabwala A, Satou C, Higashijima S, Fetcho J (2011) Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. P. Natl. Acad. Sci. USA. 108:1170-1175.
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854.
Lee SH, Liu L, Wang YT, Sheng M (2002) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36:661-674.
Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299-304.
Lewis BL, O'Donnell P (2000) Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors. Cereb. Cortex. 10:1168-1175.
Li J, Pelletier MR, Perez Velazquez JL, Carlen PL (2002) Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol. Cell Neurosci. 19:138-151.
Li R, Dozmorov M, Hellberg F, Tian Y, Jilderos B, Wigstrom H (2004) Characterization of NMDA induced depression in rat hippocampus: involvement of AMPA and NMDA receptors. Neurosci. Lett. 357:87-90.
Liu ZH, Chuang DM, Smith CB (2011) Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. Int. J. Neuropsychopharmacol. 14:618-630.
Lu KT, Gean PW (1999) Masking of forskolin-induced long-term potentiation by adenosine accumulation in area CA1 of the rat hippocampus. Neuroscience 88:69-78.
Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305:719-721.
Maren S, Fanselow MS (1995) Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J. Neurosci. 15:7548-7564.
Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179-185.
Martin JP, Bell J (1943) A Pedigree of Mental Defect Showing Sex-Linkage. J. Neurol. Psychiatry. 6:154-157.
McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, Sehgal A, Siwicki KK, Dockendorff TC, Nguyen HT, McDonald TV, Jongens TA (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45:753-764.
Michel WC, Lubomudrov LM (1995) Specificity and sensitivity of the olfactory organ of the zebrafish, Danio rerio. J. Comp. Physiol. A 177:191-199.
Morales J, Hiesinger PR, Schroeder AJ, Kume K, Verstreken P, Jackson FR, Nelson DL, Hassan BA (2002) Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34:961-972.
Moult PR, Gladding CM, Sanderson TM, Fitzjohn SM, Bashir ZI, Molnar E, Collingridge GL (2006) Tyrosine phosphatases regulate AMPA receptor trafficking during metabotropic glutamate receptor-mediated long-term depression. J. Neurosci. 26:2544-2554.
Mueller T, Dong Z, Berberoglu MA, Guo S (2011) The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res. 1381:95-105.
Mueller T, Guo S (2009) The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. J. Comp. Neurol. 516:553-568.
Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967-975.
Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, Warren ST (2007) Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. P. Natl. Acad. Sci. USA. 104:15537-15542.
Nam RH, Kim W, Lee CJ (2004a) NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neurosci. Lett. 370:248-251.
Nam RH, Kim W, Lee CJ (2004b) NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neurosci. Lett. 370:248-251.
Nayak A, Zastrow DJ, Lickteig R, Zahniser NR, Browning MD (1998) Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394:680-683.
Ng MC, Hsu CP, Wu YJ, Wu SY, Yang YL, Lu KT (2012a) Effect of MK-801-induced impairment of inhibitory avoidance learning in zebrafish via inactivation of extracellular signal-regulated kinase (ERK) in telencephalon. Fish Physiol. Biochem.
Ng MC, Tang TH, Ko MC, Wu YJ, Hsu CP, Yang YL, Lu KT (2012b) Stimulation of the lateral division of the dorsal telencephalon induces synaptic plasticity in the medial division of adult zebrafish. Neurosci. Lett. 512:109-113.
Nicoll RA, Malenka RC (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115-118.
Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J. Neurosci. 21:5139-5146.
Ninkovic J, Folchert A, Makhankov YV, Neuhauss SC, Sillaber I, Straehle U, Bally-Cuif L (2006) Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J. Neurobiol. 66:463-475.
Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav. Evolut. 46:275-318.
Northcutt RG (2006) Connections of the lateral and medial divisions of the goldfish telencephalic pallium. J. Comp. Neurol. 494:903-943.
Nosyreva ED, Huber KM (2006) Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J. Neurophysiol. 95:3291-3295.
Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas M, Mandel J (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252:1097-1102.
Oh MC, Derkach VA, Guire ES, Soderling TR (2006) Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J. Biol. Chem. 281:752-758.
Otmakhov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, Asrican B, Lisman J (2004) Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J. Neurophysiol. 91:1955-1962.
Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL (1997) The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36:1517-1532.
Pan L, Woodruff E, 3rd, Liang P, Broadie K (2008) Mechanistic relationships between Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A signaling. Mol. Cell Neurosci. 37:747-760.
Pan L, Zhang YQ, Woodruff E, Broadie K (2004) The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr. Biol. 14:1863-1870.
Peier AM, McIlwain KL, Kenneson A, Warren ST, Paylor R, Nelson DL (2000) (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum. Mol. Genet. 9:1145-1159.
Pennartz CM, Boeijinga PH, Lopes da Silva FH (1990) Locally evoked potentials in slices of the rat nucleus accumbens: NMDA and non-NMDA receptor mediated components and modulation by GABA. Brain Res. 529:30-41.
Portavella M, Torres B, Salas C (2004) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J. Neurosci. 24:2335-2342.
Portavella M, Vargas JP (2005) Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci. 21:2800-2806.
Portavella M, Vargas JP, Torres B, Salas C (2002) The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res. Bull. 57:397-399.
Quevedo J, Vianna MR, Martins MR, Barichello T, Medina JH, Roesler R, Izquierdo I (2004) Protein synthesis, PKA, and MAP kinase are differentially involved in short- and long-term memory in rats. Behav. Brain Res. 154:339-343.
Rawashdeh O, de Borsetti NH, Roman G, Cahill GM (2007) Melatonin suppresses nighttime memory formation in zebrafish. Science 318:1144-1146.
Reiss AL, Hall SS (2007) Fragile X syndrome: assessment and treatment implications. Child Adolesc. Psychiatr. Clin. N. Am. 16:663-675.
Riedel G (1998) Long-term habituation to spatial novelty in blind cave fish (Astyanax hubbsi): role of the telencephalon and its subregions. Learn. Mem. 4:451-461.
Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr. Opin. Cell. Biol. 9:180-186.
Roesler R, Vianna M, Sant'Anna MK, Kuyven CR, Kruel AV, Quevedo J, Ferreira MB (1998) Intrahippocampal infusion of the NMDA receptor antagonist AP5 impairs retention of an inhibitory avoidance task: protection from impairment by pretraining or preexposure to the task apparatus. Neurobiol. Lear. Mem. 69:87-91.
Rupp B, Wullimann MF, Reichert H (1996) The zebrafish brain: a neuroanatomical comparison with the goldfish. Anat. Embryol. 194:187-203.
Saito K, Watanabe S (2006) Deficits in acquisition of spatial learning after dorsomedial telencephalon lesions in goldfish. Behav. Brain Res. 172:187-194.
Sanhueza M, Fernandez-Villalobos G, Stein IS, Kasumova G, Zhang P, Bayer KU, Otmakhov N, Hell JW, Lisman J (2011) Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J. Neurosci. 31:9170-9178.
Savage G (1969) Some preliminary observations on the role of the telencephalon in food-reinforced behaviour in the goldfish, Carassius auratus. Anim. Behav. 17:760-772.
Schaefer GB, Mendelsohn NJ (2008) Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet. Med. 10:4-12.
Schnabel R, Kilpatrick IC, Collingridge GL (2001) Protein phosphatase inhibitors facilitate DHPG-induced LTD in the CA1 region of the hippocampus. Br. J. Pharmacol. 132:1095-1101.
Shang Y, Wang H, Mercaldo V, Li X, Chen T, Zhuo M (2009) Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice. J. Neurochem. 111:635-646.
Shinya M, Koshida S, Sawada A, Kuroiwa A, Takeda H (2001) Fgf signalling through MAPK cascade is required for development of the subpallial telencephalon in zebrafish embryos. Development 128:4153-4164.
Siomi H, Matunis MJ, Michael WM, Dreyfuss G (1993a) The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res. 21:1193-1198.
Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G (1993b) The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74:291-298.
Souza BR, Tropepe V (2011) The role of dopaminergic signalling during larval zebrafish brain development: a tool for investigating the developmental basis of neuropsychiatric disorders. Rev. Neurosci. 22:107-119.
Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293-296.
Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum. Mol. Genet. 1:397-400.
Tabor R, Friedrich RW (2008) Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb. PLoS One 3:e1416.
Tokay T, Rohde M, Krabbe S, Rehberg M, Bender RA, Kohling R, Kirschstein T (2009) HCN1 channels constrain DHPG-induced LTD at hippocampal Schaffer collateral-CA1 synapses. Learn. Mem. 16:769-776.
Trommer BL, Kennelly JJ, Colley PA, Overstreet LS, Slater NT, Pasternak JF (1995) AP5 blocks LTP in developing rat dentate gyrus and unmasks LTD. Exp. Neurol. 131:83-92.
Tucker B, Richards RI, Lardelli M (2006) Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum. Mol. Genet. 15:3446-3458.
Turner G, Webb T, Wake S, Robinson H (1996) Prevalence of fragile X syndrome. Am. J. Med. Genet. 64:196-197.
van 't Padje S, Engels B, Blonden L, Severijnen LA, Verheijen F, Oostra BA, Willemsen R (2005) Characterisation of Fmrp in zebrafish: evolutionary dynamics of the fmr1 gene. Dev. Genes Evol. 215:198-206.
Vazquez SI, Vazquez A, Pena de Ortiz S (2000) Different hippocampal activity profiles for PKA and PKC in spatial discrimination learning. Behav. Neurosci. 114:1109-1118.
Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, et al. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905-914.
Vogel G (2008) Developmental biology. Lights! Camera! Action! Zebrafish embryos caught on film. Science 322:176.
Volianskis A, Jensen MS (2003) Transient and sustained types of long-term potentiation in the CA1 area of the rat hippocampus. J. Physiol. 550:459-492.
Voronin LL (1983) Long-term potentiation in the hippocampus. Neuroscience 10:1051-1069.
Vuaden FC, Savio LE, Piato AL, Pereira TC, Vianna MR, Bogo MR, Bonan CD, Wyse AT (2012) Long-Term Methionine Exposure Induces Memory Impairment on Inhibitory Avoidance Task and Alters Acetylcholinesterase Activity and Expression in Zebrafish (Danio rerio). Neurochem. Res. 37:1545-1553.
Westerfield M (1993) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio): University of Oregon Press Eugene, OR.
Wilson BM, Cox CL (2007) Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. P. Natl. Acad. Sci. USA. 104:2454-2459.
Xiao MY, Zhou Q, Nicoll RA (2001) Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors. Neuropharmacology 41:664-671.
Xu X, Bazner J, Qi M, Johnson E, Freidhoff R (2003) The role of telencephalic NMDA receptors in avoidance learning in goldfish (Carassius auratus). Behav. Neurosci. 117:548-554.
Yazulla S, Studholme KM (2001) Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry. J. Neurocytol. 30:551-592.
Yudowski GA, Puthenveedu MA, Leonoudakis D, Panicker S, Thorn KS, Beattie EC, von Zastrow M (2007) Real-time imaging of discrete exocytic events mediating surface delivery of AMPA receptors. J. Neurosci. 27:11112-11121.
Yun SH, Trommer BL (2011) Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate receptor-mediated neurotransmission in dentate gyrus. J. Neurosci. Res. 89:176-182.
Zhang J, Hou L, Klann E, Nelson DL (2009) Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models. J. Neurophysiol. 101:2572-2580.
Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD, Rubin GM, Broadie K (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107:591-603.
Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ, Zhuo M (2005) Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J. Neurosci. 25:7385-7392.