簡易檢索 / 詳目顯示

研究生: 姜昱帆
Chiang, Yu-Fan
論文名稱: 層狀二硫化鉬的偏振解析拉曼光譜研究
Polarization-resolved Raman spectrum of layered molybdenum disulfide on diverse substrates
指導教授: 陸亭樺
Lu, Ting-Hua
藍彥文
Lan, Yann-Wen
口試委員: 董容辰
Tung, Jung-Chen
藍彥文
Lan, Yann-Wen
陸亭樺
Lu, Ting-Hua
口試日期: 2021/07/20
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 53
中文關鍵詞: 拉曼光譜偏振解析二硫化鉬
英文關鍵詞: Polarization-resolved, Raman spectrum, molybdenum disulfide
研究方法: 實驗設計法行動研究法準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101043
論文種類: 學術論文
相關次數: 點閱:122下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 偏振拉曼光譜已被廣泛應用於許多二維材料,包括石墨烯和過渡金屬硫化物,特別是使用線偏振光和圓偏振光為激發光。通過計算不同材料受不同偏振入射光影響的拉曼張量,我們可以得知聲子振動模式是如何表現其偏振態。
    在這項工作中,單層二硫化鉬被轉移到擁有不同厚度之二氧化矽的矽基板上,以測量偏振拉曼光譜。結果顯示,當被線偏振的入射光激發時,單層二硫化鉬的面內振動(E^')和面外振動(A_1^')模式分別表現出各向同性和線偏振的散射光。同時,當使用圓偏振光作為激發光時,E^'和A_1^'模態則分別表現出旋向交換(helicity-exchange)和旋向守恆(helicity-conserve)的行為。
    更重要的是,實驗結果發現單層二硫化鉬的E^'和 A_1^'振動模式在位於純矽基板上時出現與理論模型相異的情形。我們引入了一個強度偏移量來解釋二硫化鉬的聲子與基板之間的耦合效應。此外,還引用了一些與電子-聲子耦合如何影響拉曼強度的偏振態有關的論文,去解釋這種奇特的現象,深入探討層狀二維材料的聲子與光子之間的交互作用,以期提供未來先進材料應用更多重要的基礎與應用。

    摘要 i 致謝 ii 目次 iii 表次 v 圖次 vi 第一章 導論 1.1實驗動機 1 1.2電子能階與光譜量測方法 2 1.2.1電子能階轉換 2 1.2.2 振動能階的光譜量測2 1.3 二硫化鉬的聲子振動模式 3 1.3.1 二硫化鉬的晶格結構及對稱性點群論簡介 3 1.3.2二硫化鉬的聲子分布及振動模式 5 1.4 二硫化鉬的拉曼張量 8 1.5 拉曼散射光的偏振解析 10 1.5.1光學偏振態 11 1.5.2拉曼散射強度的偏振解析 14 1.5.3拉曼偏振解析實驗架構 15 1.6 偏振拉曼解析相關文獻 21 1.7 電子-聲子以及激子-聲子交互作用 24 1.8 矽基板的拉曼張量 26 第二章 實驗結果呈現與討論 2.1 樣品製備以及樣品基本資訊 29 2.2 單層二硫化鉬在不同種矽基板上的線性偏振入射光拉曼光譜偏振解析 30 2.2.1在SiO2 / Si (100)基板上的偏振拉曼解析 31 2.2.2在bare Si (100)基板上的偏振拉曼解析 31 2.2.3在bare Si (111)基板上的偏振拉曼解析 32 2.3單層二硫化鉬在不同種矽基板上的圓偏振入射光拉曼光譜偏振解析 33 2.3.1在SiO2 / Si (100)基板上的偏振拉曼解析 33 2.3.2在bare Si (100)基板上的偏振拉曼解析 34 2.3.3在bare Si (111)基板上的偏振拉曼解析 35 2.4單層二硫化鉬在不同厚度二氧化矽層之不同種矽基板上的偏振解析拉曼光譜 36 第三章 實驗結果分析擬合與討論 3.1以拉曼張量及光學瓊斯計算為基底的理想理論模型計算 39 3.2 數據擬合及分析討論 44 第四章 總結及未來工作 49 參考文獻 50

    1. Liu, Y., Duan, X., Shin, H. J., Park, S., Huang, Y., & Duan, X. (2021). Promises and prospects of two-dimensional transistors. Nature, 591(7848), 43–53.
    2. Cong, X., Liu, X. L., Lin, M. L., & Tan, P. H. (2020). Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. Npj 2D Materials and Applications, 4(1).
    3. Kim, J., Lee, J. U., & Cheong, H. (2020). Polarized Raman spectroscopy for studying two-dimensional materials. Journal of Physics: Condensed Matter, 32(34), 343001.
    4. Wang, S., Sawada, H., Allen, C. S., Kirkland, A. I., & Warner, J. H. (2017). Orientation dependent interlayer stacking structure in bilayer MoS2 domains. Nanoscale, 9(35), 13060–13068.
    5. van Baren, J., Ye, G., Yan, J. A., Ye, Z., Rezaie, P., Yu, P., Liu, Z., He, R., & Lui, C. H. (2019). Stacking-dependent interlayer phonons in 3R and 2H MoS2. 2D Materials, 6(2), 025022
    6. Ribeiro-Soares, J., Almeida, R. M., Barros, E. B., Araujo, P. T., Dresselhaus, M. S., Cançado, L. G., & Jorio, A. (2014). Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 90(11).
    7. Cai, Z., Liu, B., Zou, X., & Cheng, H. M. (2018). Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 118(13), 6091–6133.
    8. Paradisanos, I., Shree, S., George, A., Leisgang, N., Robert, C., Watanabe, K., Taniguchi, T., Warburton, R. J., Turchanin, A., Marie, X., Gerber, I. C., & Urbaszek, B. (2020). Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nature Communications, 11(1)
    9. Schmidt, H., Wang, S., Chu, L., Toh, M., Kumar, R., Zhao, W., Castro Neto, A. H., Martin, J., Adam, S., ÖZyilmaz, B., & Eda, G. (2014). Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition. Nano Letters, 14(4), 1909–1913.
    10. Tornatzky, H., Gillen, R., Uchiyama, H., & Maultzsch, J. (2019). Phonon dispersion in MoS2. Physical Review B, 99(14).
    11. Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., & Baillargeat, D. (2012). From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 22(7), 1385–1390.
    12. Cai, Y., Lan, J., Zhang, G., & Zhang, Y. W. (2014). Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Physical Review B, 89(3).
    13. Lan, Y., Zondode, M., Deng, H., Yan, J. A., Ndaw, M., Lisfi, A., Wang, C., & Pan, Y. L. (2018). Basic Concepts and Recent Advances of Crystallographic Orientation Determination of Graphene by Raman Spectroscopy. Crystals, 8(10), 375.
    14. Zhang, X., Qiao, X. F., Shi, W., Wu, J. B., Jiang, D. S., & Tan, P. H. (2015). Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 44(9), 2757–2785
    15. Saito, R., Tatsumi, Y., Huang, S., Ling, X., & Dresselhaus, M. S. (2016). Raman spectroscopy of transition metal dichalcogenides. Journal of Physics: Condensed Matter, 28(35), 353002.
    16. Ding, Y., Zheng, W., Jin, M., Zhu, Y., Zhu, R., Lin, Z., & Huang, F. (2020). Raman tensor of layered MoS2. Optics Letters, 45(6), 1313.
    17. Delaney, S., Sánchez-López, M. M., Moreno, I., & Davis, J. A. (2017). Arithmetic with q-plates. Applied Optics, 56(3), 596
    18. Ting, C. H. (1968). Polarized Raman spectra—I. Selection rules. Spectrochimica Acta Part A: Molecular Spectroscopy, 24(8), 1177–1189.
    19. Zobeiri, H., Wang, R., Deng, C., Zhang, Q., & Wang, X. (2019). Polarized Raman of Nanoscale Two-Dimensional Materials: Combined Optical and Structural Effects. The Journal of Physical Chemistry C, 123(37), 23236–23245.
    20. Zhang, X., Han, W. P., Wu, J. B., Milana, S., Lu, Y., Li, Q. Q., Ferrari, A. C., & Tan, P. H. (2013). Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Physical Review B, 87(11).
    21. Tatsumi, Y., & Saito, R. (2018). Interplay of valley selection and helicity exchange of light in Raman scattering for graphene and MoS2. Physical Review B, 97(11).
    22. Kim, H., Ko, H., Kim, S. M., & Rho, H. (2020). Polarization‐dependent anisotropic Raman response of CVD‐grown vertically stacked MoS2 layers. Journal of Raman Spectroscopy, 51(5), 774–780.
    23. Chen, S. Y., Zheng, C., Fuhrer, M. S., & Yan, J. (2015). Helicity-Resolved Raman Scattering of MoS2, MoSe2, WS2, and WSe2 Atomic Layers. Nano Letters, 15(4), 2526–2532.
    24. Zhao, Y., Zhang, S., Shi, Y., Zhang, Y., Saito, R., Zhang, J., & Tong, L. (2020). Characterization of Excitonic Nature in Raman Spectra Using Circularly Polarized Light. ACS Nano, 14(8), 10527–10535.
    25. Cantarero, A., Trallero-Giner, C., & Cardona, M. (1989). Excitons in one-phonon resonant Raman scattering: Deformation-potential interaction. Physical Review B, 39(12), 8388–8397.
    26. Cantarero, A., Trallero-Giner, C., & Cardona, M. (1989). Excitons in one-phonon resonant Raman scattering: Fröhlich and interference effects. Physical Review B, 40(18), 12290–12295.
    27. Talochkin, A. B. (2019). Circularly polarized Raman scattering in silicon. Journal of Raman Spectroscopy, 51(1), 201–206.
    28. Lee, J. H., Kim, S., & Seong, M. J. (2018). Circularly polarized Raman study on diamond structure crystals. Journal of the Korean Physical Society, 72(2), 249–253.
    29. Steele, J. A., Puech, P., & Lewis, R. A. (2016). Polarized Raman backscattering selection rules for (hhl)-oriented diamond- and zincblende-type crystals. Journal of Applied Physics, 120(5), 055701.

    下載圖示
    QR CODE