研究生: |
姜昱帆 Chiang, Yu-Fan |
---|---|
論文名稱: |
層狀二硫化鉬的偏振解析拉曼光譜研究 Polarization-resolved Raman spectrum of layered molybdenum disulfide on diverse substrates |
指導教授: |
陸亭樺
Lu, Ting-Hua 藍彥文 Lan, Yann-Wen |
口試委員: |
董容辰
Tung, Jung-Chen 藍彥文 Lan, Yann-Wen 陸亭樺 Lu, Ting-Hua |
口試日期: | 2021/07/20 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 拉曼光譜 、偏振解析 、二硫化鉬 |
英文關鍵詞: | Polarization-resolved, Raman spectrum, molybdenum disulfide |
研究方法: | 實驗設計法 、 行動研究法 、 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101043 |
論文種類: | 學術論文 |
相關次數: | 點閱:200 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
偏振拉曼光譜已被廣泛應用於許多二維材料,包括石墨烯和過渡金屬硫化物,特別是使用線偏振光和圓偏振光為激發光。通過計算不同材料受不同偏振入射光影響的拉曼張量,我們可以得知聲子振動模式是如何表現其偏振態。
在這項工作中,單層二硫化鉬被轉移到擁有不同厚度之二氧化矽的矽基板上,以測量偏振拉曼光譜。結果顯示,當被線偏振的入射光激發時,單層二硫化鉬的面內振動(E^')和面外振動(A_1^')模式分別表現出各向同性和線偏振的散射光。同時,當使用圓偏振光作為激發光時,E^'和A_1^'模態則分別表現出旋向交換(helicity-exchange)和旋向守恆(helicity-conserve)的行為。
更重要的是,實驗結果發現單層二硫化鉬的E^'和 A_1^'振動模式在位於純矽基板上時出現與理論模型相異的情形。我們引入了一個強度偏移量來解釋二硫化鉬的聲子與基板之間的耦合效應。此外,還引用了一些與電子-聲子耦合如何影響拉曼強度的偏振態有關的論文,去解釋這種奇特的現象,深入探討層狀二維材料的聲子與光子之間的交互作用,以期提供未來先進材料應用更多重要的基礎與應用。
1. Liu, Y., Duan, X., Shin, H. J., Park, S., Huang, Y., & Duan, X. (2021). Promises and prospects of two-dimensional transistors. Nature, 591(7848), 43–53.
2. Cong, X., Liu, X. L., Lin, M. L., & Tan, P. H. (2020). Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. Npj 2D Materials and Applications, 4(1).
3. Kim, J., Lee, J. U., & Cheong, H. (2020). Polarized Raman spectroscopy for studying two-dimensional materials. Journal of Physics: Condensed Matter, 32(34), 343001.
4. Wang, S., Sawada, H., Allen, C. S., Kirkland, A. I., & Warner, J. H. (2017). Orientation dependent interlayer stacking structure in bilayer MoS2 domains. Nanoscale, 9(35), 13060–13068.
5. van Baren, J., Ye, G., Yan, J. A., Ye, Z., Rezaie, P., Yu, P., Liu, Z., He, R., & Lui, C. H. (2019). Stacking-dependent interlayer phonons in 3R and 2H MoS2. 2D Materials, 6(2), 025022
6. Ribeiro-Soares, J., Almeida, R. M., Barros, E. B., Araujo, P. T., Dresselhaus, M. S., Cançado, L. G., & Jorio, A. (2014). Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 90(11).
7. Cai, Z., Liu, B., Zou, X., & Cheng, H. M. (2018). Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 118(13), 6091–6133.
8. Paradisanos, I., Shree, S., George, A., Leisgang, N., Robert, C., Watanabe, K., Taniguchi, T., Warburton, R. J., Turchanin, A., Marie, X., Gerber, I. C., & Urbaszek, B. (2020). Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nature Communications, 11(1)
9. Schmidt, H., Wang, S., Chu, L., Toh, M., Kumar, R., Zhao, W., Castro Neto, A. H., Martin, J., Adam, S., ÖZyilmaz, B., & Eda, G. (2014). Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition. Nano Letters, 14(4), 1909–1913.
10. Tornatzky, H., Gillen, R., Uchiyama, H., & Maultzsch, J. (2019). Phonon dispersion in MoS2. Physical Review B, 99(14).
11. Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., & Baillargeat, D. (2012). From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 22(7), 1385–1390.
12. Cai, Y., Lan, J., Zhang, G., & Zhang, Y. W. (2014). Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Physical Review B, 89(3).
13. Lan, Y., Zondode, M., Deng, H., Yan, J. A., Ndaw, M., Lisfi, A., Wang, C., & Pan, Y. L. (2018). Basic Concepts and Recent Advances of Crystallographic Orientation Determination of Graphene by Raman Spectroscopy. Crystals, 8(10), 375.
14. Zhang, X., Qiao, X. F., Shi, W., Wu, J. B., Jiang, D. S., & Tan, P. H. (2015). Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 44(9), 2757–2785
15. Saito, R., Tatsumi, Y., Huang, S., Ling, X., & Dresselhaus, M. S. (2016). Raman spectroscopy of transition metal dichalcogenides. Journal of Physics: Condensed Matter, 28(35), 353002.
16. Ding, Y., Zheng, W., Jin, M., Zhu, Y., Zhu, R., Lin, Z., & Huang, F. (2020). Raman tensor of layered MoS2. Optics Letters, 45(6), 1313.
17. Delaney, S., Sánchez-López, M. M., Moreno, I., & Davis, J. A. (2017). Arithmetic with q-plates. Applied Optics, 56(3), 596
18. Ting, C. H. (1968). Polarized Raman spectra—I. Selection rules. Spectrochimica Acta Part A: Molecular Spectroscopy, 24(8), 1177–1189.
19. Zobeiri, H., Wang, R., Deng, C., Zhang, Q., & Wang, X. (2019). Polarized Raman of Nanoscale Two-Dimensional Materials: Combined Optical and Structural Effects. The Journal of Physical Chemistry C, 123(37), 23236–23245.
20. Zhang, X., Han, W. P., Wu, J. B., Milana, S., Lu, Y., Li, Q. Q., Ferrari, A. C., & Tan, P. H. (2013). Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Physical Review B, 87(11).
21. Tatsumi, Y., & Saito, R. (2018). Interplay of valley selection and helicity exchange of light in Raman scattering for graphene and MoS2. Physical Review B, 97(11).
22. Kim, H., Ko, H., Kim, S. M., & Rho, H. (2020). Polarization‐dependent anisotropic Raman response of CVD‐grown vertically stacked MoS2 layers. Journal of Raman Spectroscopy, 51(5), 774–780.
23. Chen, S. Y., Zheng, C., Fuhrer, M. S., & Yan, J. (2015). Helicity-Resolved Raman Scattering of MoS2, MoSe2, WS2, and WSe2 Atomic Layers. Nano Letters, 15(4), 2526–2532.
24. Zhao, Y., Zhang, S., Shi, Y., Zhang, Y., Saito, R., Zhang, J., & Tong, L. (2020). Characterization of Excitonic Nature in Raman Spectra Using Circularly Polarized Light. ACS Nano, 14(8), 10527–10535.
25. Cantarero, A., Trallero-Giner, C., & Cardona, M. (1989). Excitons in one-phonon resonant Raman scattering: Deformation-potential interaction. Physical Review B, 39(12), 8388–8397.
26. Cantarero, A., Trallero-Giner, C., & Cardona, M. (1989). Excitons in one-phonon resonant Raman scattering: Fröhlich and interference effects. Physical Review B, 40(18), 12290–12295.
27. Talochkin, A. B. (2019). Circularly polarized Raman scattering in silicon. Journal of Raman Spectroscopy, 51(1), 201–206.
28. Lee, J. H., Kim, S., & Seong, M. J. (2018). Circularly polarized Raman study on diamond structure crystals. Journal of the Korean Physical Society, 72(2), 249–253.
29. Steele, J. A., Puech, P., & Lewis, R. A. (2016). Polarized Raman backscattering selection rules for (hhl)-oriented diamond- and zincblende-type crystals. Journal of Applied Physics, 120(5), 055701.