研究生: |
余竑旻 YU HUNG MING |
---|---|
論文名稱: |
近代時頻分析法在準3D透地雷達案例上之應用 Application of Contemporary Time-frequency Analysis Methods to Pseudo-3D Ground-penetrating Radar Data |
指導教授: |
鄭懌
Jeng, Yih |
學位類別: |
博士 Doctor |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 準三度空間 、透地雷達 、時頻分析 、自然對數轉換 、總體經驗模組分解 、瞬時特質 、曲冰史前遺址 、清水地熱 |
論文種類: | 學術論文 |
相關次數: | 點閱:183 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究先在校園實驗模擬試驗場,採用準三度空間(pseudo-3D)透地雷達佈線幾何得到準三度空間數據資料,結合近代時頻分析所衍生出之各種資料處理的新技術,例如自然對數轉換(nature logarithmic transform, NLT)、總體經驗模組分解(ensemble empirical mode decomposition, EEMD)及瞬時特質(instantaneous attributes, IAs)剖面等,獲得佈線幾何解析能力之參考及資料處理新技術之標準處理流程。再分別前往位於台灣中部南投曲冰史前考古遺址及東北部宜蘭清水地熱區,做野外實地透地雷達準三度空間反射測勘,並以在實驗測區得到的經驗給予最佳的野外佈線設計及資料處理流程。最後,於本論文中以傳統資料處理方法與新技術之解析能力及成效加以探討,並解釋與討論透地雷達地球物理探勘法應用於各個案例之結果。
曲冰遺址位處高山河階台地,文物蘊藏豐富,範圍廣闊,是台灣考古研究中所發現之高山地區最為完整的史前聚落。該遺址之徹底研究將對台灣初民的來源、遷徙、與文化發展有重要的貢獻,歷年來雖經三次發掘,仍無法呈現全貌。本研究除了探討曲冰遺址在台灣原民歷史上的意義及保存的價值外,也利用淺層解析度最佳的地球物理考古方法─透地雷達做模擬研究,並在曲冰遺址及其鄰近地區做重點式的探測,了解後續發掘的可能性及未來古蹟維護保存的方式。由目前所得結果顯示,本研究之探勘技術,可快速地定出地下目標物之位置。經與已知資料比對,曲冰遺址周遭未發掘的測區非常值得續挖;已發掘區之深處,也有具考古意義之明顯事件。這對支持曲冰遺址爾後再次考古發掘提供有利證據,並對原址的古蹟保存提出有效的檢測技術。
而清水地熱位於宜蘭縣大同鄉東北端地區,此區域主要屬於脊樑山脈北段的變質岩區。本研究於該野外測區所取得之透地雷達反射測勘數據資料,主要位於廬山層出露區及其上河流河床之沖積層區。上述兩地層為此測區之基本岩層,另外於構造上有兩個主要斷層和兩個小斷層分布,主要斷層為西邊的牛鬥斷層與清水溪東南區的古魯斷層。本研究將此區透地雷達反射數據,以時頻分析濾波方式處理後,再以準三度空間立體剖面來比對現場出露的岩層走向與構造,初步得到一致的結果,例如褶皺軸走向。此測區中部分出露的山壁大構造裡,又可見若干較小尺度的構造約在數公尺至數十公尺之間,與本研究在此區所獲得透地雷達反射數據剖面中之可疑反射信號尺度接近。由於間隔10 m的數條測線皆有類似的反射信號,故應可直接大膽地判斷其為地下有意義的構造剖面,若日後有開挖或鑽井資料可供驗證,則將會有更有利的證據說明本研究方法應用於此測區為可行且推薦之方法。
於兩個實驗測區中,正交、雙向的準三度空間透地雷達反射測勘配合近代時頻分析之數據資料處理,解析能力極高,能正確地判斷與定位出目標物之位置,甚至大小與形狀也能解析出來。而在兩個野外測區案例當中,因為須考量野外工時、施測地理環境限制等因素,故僅以簡約準三度空間幾何佈線施測,但因為也得以配合近代時頻分析資料處理之新技術,故最後的準三度空間透地雷達立體影像之結果仍令人滿意。
台灣原住民族資訊資源網,2012。http://www.tipp.org.tw/formosan/tribe/tribe_detail3.jspx?id=20071219000006
台灣原住民族歷史語言文化大辭典網路版,2012。http://citing.hohayan.net.tw/citing_content.asp?id=3706&keyword=%E8%95%83
台灣原住民數位博物館,2012。http://www.dmtip.gov.tw/Aborigines/Article.aspx?CategoryID=1&ClassID=1&TypeID=2&RaceID=2
李玉龍,曲冰遺址之地磁特性分析。國立台灣師範大學地球科學研究所碩士論文,臺北,1999。
何春蓀,台灣地質學概論。中華民國經濟部,118頁,1975。
何傳坤、陳浩維。透地雷達應用於台灣中部考古學,中國民族學通訊,第33期,25-31頁,1995。
余竑旻,竹山車籠埔斷層極淺層反射震測之可能頻譜建構。國立台灣師範大學地球科學所碩士論文,2004。
余竑旻、陳志松、鄭懌,曲冰史前遺址之透地雷達研究。社會與區域發展學報,第3卷第2期(出版中),2012。
林宏泰,透地雷達應用於遺址探測及堤防掏空之研究,2003。
林啟文、林偉雄,五萬分之一台灣地質圖:三星圖幅。經濟部中央地質調查所,1995。
林朝棨,南投縣地理志地形篇稿。南投文獻叢輯(12),南投縣文獻委員會,1964。
林銘駿,泥火山甚低頻電磁測勘之研究-分析及反演。國立台灣師範大學地球科學所博士論文,2010。
徐漢倫,大地電磁法探查台灣清水地熱區。國立中央大學碩士論文,2007。
陳仲玉,濁水溪上游河谷的考古學調查。中央研究院歷史語言研究所集刊,第53本第4分,頁711-745,1982。
陳仲玉,曲冰。中央研究院歷史語言研究所田野工作報告之二,1994。
陳仲玉、董倫道,金門地區透地雷達探測貝塚,第四屆科學史研討會彙刊,台北:中央研究院科學史委員會,頁269-275,1996。
陳志松,地表兩公尺之高解析度反射震測。國立台灣師範大學地球科學所碩士論文,2002。
陳志松,反射探勘數據重建及其淺層地質應用。國立台灣師範大學地球科學所博士論文,2011。
曾長生,宜蘭縣清水及土場區地質及地熱產狀。台灣石油地質,15,11-23,1978。
張光直,台灣省濁水溪與大肚溪流域考古調查報告。中央研究院歷史語言研究專刊之七十,頁425-435,1977。
張君仰,透地雷達於古蹟探測之應用,2004。
張麗旭,台灣變質區第三系基於小型有孔蟲之生物地層學研究(四:中央山脈最北部) 。中國地質學會會刊,17,85-93,1974。
國立成功大學公共工程研究中心,透地雷達技術應用於基隆和平島古堡舊城牆遺址之探測期末報告書,2002。
董倫道,卑南遺址地物探測與考古議題整合第一期研究計畫結案報告書。國立臺灣史前文化博物館委託工業技術研究院綠能與環境研究所執行,2011。
劉枝萬,南投縣考古誌要。南投文獻叢輯(4),南投縣文獻委員會,1956。
蔡逸凡、張竝瑜、包曉鷗,利用透地雷達探測基隆和平島聖薩爾瓦多城諸聖修道院殘跡,2012。
蕭永龍、董倫道,透地雷達探測術於卑南遺址之應用,國立台灣史前文化博物館籌備處通訊,第5卷,1-24頁,1995。
Belina, F.A., B Dafflon, J. Tronicke, and K. Holliger, 2009, Enhancing the vertical resolutionof surface georadar data: Journal of Applied Geophysics, 68, 26-35.
Bonomo, N., Osella, A., and Ratto, N., 2010, Detecting and mapping buried buildings with Ground-Penetrating Radar at an ancient village in northwestern Argentina: Journal of Archaeological Science, vol. 37, pp. 3247-3255
Booth, A. D., N. T. Linford, R. A., Clark, and T. Murray, 2008. Three-dimensional, Multi-offset Ground-penetrating Radar Imaging of Archaeological Targets. Archaeological Prospection,Vol. 15, No. 2, pp. 93-112.
Brandt, O., K. Langley, J. Kohler, and S. E. Hamran, 2007, Detection of buried ice and sediment layers in permafrost using multi-frequency ground penetrating radar: A case examination on Svalbard. Remote Sensing of Environment, 111, 212-227.
Butler, K. E., and R. D. Russell, 1993, Subtraction of powerline harmonics from geophysical records: Geophysics, 58, no.6, 898–903.
Butler, K. E., and R. D. Russell, 2003, Cancellation of multiple harmonic noise series in geophysical records: Geophysics, 68, no.3, 1083–1090.
Charles, E. E., and J. C. Maillol, 2008, Using ERI to apply an inverse Q* filter to GPR data: CSPG CSEG CWLS Convention, 127-131.
Chen, C.-S., and Y. Jeng, 2011. Nonlinear Data Processing Method for the Signal Enhancement of GPR Data. Journal of Applied Geophysics, V. 75, No. 1, pp. 113-123, doi:10.1016/j.jappgeo.2011.06.017.
Chen, C.-S., Y. Jeng, and L.-C. Chen, 2011. A New Processing Scheme for the Ground Penetrating Radar Technology to Image Geological Features. Taiwan Mining Industry, Vol. 63, No. 2, pp. 13-24 (In Chinese with English abstract).
Davis, J. L. and A. P. Annan, 1989. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy: Geophysical Prospecting, 37, no.5, p.531-551.
Drabycz, S., Stockwell, R.G., Mitchell, R.: Image texture characterization using the discrete orthonormal s-transform. Journal of Digital Imaging (2008),doi:10.1007/s10278-008-9138-8
Flandrin, P., G. Rilling, and P. Gonçalvés, 2004, Empirical mode decomposition as a filter bank: IEEE Signal Processing Letters, 11, no.2, 112-114.
Gochioco, L. M., 1991, Tuning effect and interference reflections from thin beds and coal seams: Geophysics, 56, no.8, 1288-1295.
Grasmueck, M., Weger, R., and Horstnieyer, H., Full-resolution 3D GPR imaging for Geo-science and archeology: Tenth Inteniational Coiferelice on Groirrid Penetrating Radai; 21-24 June, 2004, Delft, The Netherlands, pp.329-332
Huang, N.E., and S.S.P. Shen, 2005, Hilbert-Huang Transform and Its Applications: World Scientific, Singapore.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H.-H. Shih, Q. Zheng, N.-C. Yen, C.-C. Tung, and H.-H. Liu, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis: Proceedings of the Royal Society London Series A, 454, 903-995.
Huang, N.E., M.L. Wu, S.R. Long, S.S. Shen, W.D. Qu, P. Gloersen, and K.L. Fan, 2003, A confidence limit for the position empirical mode decomposition and Hilbert spectral analysis: Proceedings of the Royal Society London Series A, 459, 2317-2345.
Huang, N. E., and Z. Wu, 2008, A review on Hilbert–Huang transform: the method and its applications on geophysical studies: Reviews of Geophysics, 46, RG 2006, doi: 10.1029/2007RG000228.
Jeffryes, B.P., 2002, A method of seismic surveying with overlapping shot times: US Patent 7,050,356.
Jeng, Y., 1995, Shallow seismic investigation of a site with poor reflection quality: Geophysics, 60, no.6, 1715-1726.
Jeng, Y., C.-H. Lin, Y.-W. Li, C.-S. Chen, and H.-M. Yu, 2011. Application of Sub-image Multiresolution Analysis of Ground-penetrating Radar Data in a Study of Shallow Structures. Journal of Applied Geophysics, V. 73, No. 3, pp. 251-260, doi:10.1016/j.jappgeo.2011.01.007.
Jeng Y., and C.-S. Chen, 2011, A nonlinear method of removing harmonic noise in geophysical data: Nonlinear Processes in Geophysics, 18, no. 3, p. 367-379, doi:10.5194/npg-18-367-2011
Jeng, Y., C.-S. Chen, H.-M. Yu, A.S.-R. Jeng, C.-Y. Tang, and M.-J. Lin, 2007a, Ultrashallow seismic experiment on a trenched section of the Chelunpu fault zone, Taiwan: Tectonophysics , 443, no.3-4, 255-270, doi:10.1016/j.tecto.2007.01.021.
Jeng, Y., H-M Yu, C-S Chen, 2012. Instantaneous attribute profiling of GPR data using the HHT technique: European Geosciences Union General Assembly, Vienna, Austria, April 22-27, 2012, Geophysical Research Abstracts, Vol. 14, EGU2012-1412
Jeng, Y., H-M Yu, C-S Chen, 2012. The use of pseudo-3D ground penetrating radar imaging with logarithmic transformed EEMD technique in studying the Chuping prehistoric site, central Taiwan. In preparation.
Jeng, Y., M.-J. Lin, C.-S. Chen, and Y.-H. Wang, 2007b, Noise reduction and data recovery for a very low frequency electromagnetic survey using the nonlinear decomposition method: Geophysics, 72, no.5, F223-F235.
Jeng, Y., Y.-L. Lee, C.-Y. Chen, and M.-J. Lin, 2003. Integrated Signal Enhancements in Magnetic Investigation in Archaeology. Journal of Applied Geophysics, Vol. 53, No. 1, pp. 31-48.
Jeng, Y., Y.-W. Li, C.-S. Chen, and H.-Y. Chien, 2009, Adaptive filtering of random noise in near-surface seismic and ground-penetrating radar data: Journal of Applied Geophysics, 68, 36-46. doi:10.1016/j.jappgeo.2008.08.013.
Knapp, R.W.,and D. W. Steeples, 1986, High-resolution common-depth-point seismic reflection profiling: Field acquisition parameter design: Geophysics, 51, no.2, 283-294.
Lin, M.-J., and Y. Jeng, 2010, Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan: Geomorphology, 119, no.1-2, 97-110, doi:10.1016/j.geomorph.2010.02.021.
Meunier, J., and T. Bianchi, 2002, Harmonic noise reduction opens the way for array size reduction in vibroseis operations: 72nd Annual International Meeting, SEG, Expanded Abstracts, 70–73.
Neal, A., 2004, Ground-penetrating radar and its use in sedimentology: principles, problems and progress: Earth-Science Reviews, 66, 261-330.
Nielsen, L., I. Møller, L.H. Nielsen, P.J. Johannessen, and M. Pejrup, T.J. Andersen, and J.S. Korshøj, 2009, Integrating ground-penetrating radar and borehole data from a Wadden Sea barrier island: Journal of Applied Geophysics, 68, 47-59. doi:10.1016/j.jappgeo.2009.01.002.
Novo, A., Grasmueck, M., Viggiano, D. A., and Lorenzo, H., 3D GPR in Archeology: What can be gained from dense Data Acquisition and Processing?: 12th International Conference on Ground Penetrating Radar, June 16-19, 2008, Birmingham, UK
Novo, A., Lorenzo, H., Rial, F. I., and Solla, M., 2009, From Pseudo-3D to Full-resolution GPR Imaging in Archaeology: A complex Roman site in Lugo, Spain: IEEE
Novo, A., Lorenzo, H., Rial, F. I., Pereira, M.,and Solla, M., Ultra-dense grid strategies for 3D GPR in Archaeology: 12th International Conference on Ground Penetrating Radar, June 16-19, 2008, Birmingham, UK
Nuzzo, L., Leucci, G., Negri, S., Carrozzo, M. T., and Quarta T., 2002, Application of 3D visualization techniques in the analysis of GPR data for archaeology: ANNALS OF GEOPHYSICS, vol. 45, No. 2, pp.321-337
Nyman, D. C., and J. E. Gaiser, 1983, Adaptive rejection of highline contamination: 53rd Annual 21 International Meeting, SEG, Expanded Abstracts, 321-323.
Roberts, R., Cist, D., and Kathage, A., 2009, Full-Resolution GPR Imaging Applied to Utility Surveying: Insights from Multi-Polarization Data Obtained over a Test Pit: GSSI
Saucier, A., M. Marchant, and M. Chouteau, 2006, A fast and accurate frequency estimation method for canceling harmonic noise in geophysical records: Geophysics, 71, no.1, V7-V18.
Watters, M. S., GPR: A tool for archaeological management: Tenth Inteniational Coiferelice on Groirrid Penetrating Radai; 21-24 June, 2004, Delft, The Netherlands, pp. 811-815
Whiting, B. M., McFarland, D. P., and Hackenberger, S., 2001, Three-dimensional GPR study of a prehistoric site in Barbados, West Indies: Journal of Applied Geophysics, vol.47, pp.217-226
Widess, M. B., 1973, How thin is a thin bed: Geophysics, 38, no.6, 1176-1180.
Wikipedia, 2012. http://en.wikipedia.org/wiki/Taiwanese_aborigines
Wu, Z., and N.E. Huang, 2004, A study of the characteristics of white noise using the empirical mode decomposition method: Proceedings of the Royal Society London Series A, 460, 1597-1611.
Wu, Z., and N. E. Huang, 2005, Ensemble empirical mode decomposition: A noise-assisted data analysis method: COLA Tech. Rep. 193, Cent. for Ocean-Land-Atmos. Stud., Calverton, Md.
Wu, Z., and N.E. Huang, 2009, Ensemble empirical mode decomposition: A noise-assisted data analysis method: Advances in Adaptive Data Analysis, 1, no.1, 1-41.