研究生: |
徐子妍 Hsu, Tzu-Yen |
---|---|
論文名稱: |
運用機器學習分析珊瑚礁魚類聲音多樣性 Evaluating the sound diversity of reef fish via machine learning |
指導教授: |
林思民
Lin, Si-Min 林子皓 LIN, Tzu-Hao |
口試委員: |
莫顯蕎
Mok, Hin-Kiu 黃俊嘉 Huang, Chun-Chia 林子皓 LIN, Tzu-Hao 林思民 Lin, Si-Min |
口試日期: | 2023/06/16 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 被動式聲學監測 、礁岩性魚類 、聲音多樣性 、特徵擷取 、群聚生態學 、生態擾動 |
英文關鍵詞: | passive acoustic monitoring, reef-associated fish, sound diversity, feature extraction, community ecology, ecological disturbance |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301489 |
論文種類: | 學術論文 |
相關次數: | 點閱:106 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,聆聽水下聲音逐漸被視為一種監測魚類群聚生態的新興技術,但受限於資料庫的匱乏與缺乏能夠有效降低噪音干擾的聲音分析工具,魚類聲音的研究仍有許多挑戰。本研究透過兩個方面探討被動式聲學監測魚類群聚生態的可行性。首先,透過國內外的聲音資料庫蒐集魚類聲音資料,並針對可能會出現在台灣東北海域的礁岩性物種進行聲音特徵分析,並以流形學習探討聲音多樣性與物種多樣性之間的關係。結果顯示,礁岩性魚類的聲音在時序和頻率特徵上有很大的變化,可以透過聲音特徵的種間差異將各科魚類區分成不同的聲音功能群,顯示種間差異是貢獻礁岩性魚類聲音多樣性的主要來源之一。為了實際觀察魚類聲音多樣性在礁岩生態系的長期變化趨勢,本研究於基隆市望海巷潮境海灣資源保育區內設置水下錄音測站,透過聲源分離模型自動化偵測魚類聲音,分析魚類聲音豐度的季節性變化模式,並透過頻率和時序特徵在降維後的分布密度變化量測聲音多樣性。結果顯示魚類發聲活動與聲音多樣性的高峰集中在春夏兩季,但同時也受到極端海溫、颱風以及人為活動等因子影響,因而導致在2020至2022三年間觀察到的季節性變化趨勢略有不同。本研究結果證明運用機器學習分析長時間水下錄音可以有效評估魚類聲音多樣性,是了解礁岩性魚類群聚組成變化和探討其受到環境、人為變動影響的關鍵指標。此技術的後續應用將有助於保育主管機關與研究人員長期監測礁岩性魚類群聚生態,並為魚類多樣性的保育管理提供重要參考依據。未來建議擴充聲音資料庫並增加長期錄音樣點,探討魚類聲音多樣性在不同棲地、時間的變化,更進一步了解魚類群聚面對環境變遷和人為干擾的反應。
In recent years, passive acoustic monitoring (PAM) has emerged as a promising technique for monitoring soniferous fish. However, the application of PAM in fish community assessment still faces challenges due to limited databases and a lack of effective tools to avoid noise interference. This research sought to address these challenges by integrating machine learning techniques into the PAM of fish community. First, audio data of reef-associated species were collected from online sound databases. Subsequently, manifold learning was applied to measure the spectral and temporal rhythmic features of fish sounds and to analyze the relationship between sound diversity and species diversity. The results showed that three functional groups of families can be classified depending on the inter-specific variations observed in the temporal and spectral domains. This suggests that inter-specific variation is a major source of fish sound diversity. To investigate the long-term trends of fish sound diversity in reef ecosystems, an underwater recording station was established in Wanghaixiang Chaojing Bay Resource Conservation Area, Keelung, Taiwan. Fish sounds were automatically detected using a source separation model, and the seasonal patterns of sound richness and diversity were analyzed. The results showed that the peak of sound richness and diversity occurred in spring and summer, but were still influenced by factors such as extreme seawater temperature, typhoons, and human activities. These findings suggest that the use of machine learning in the analysis of long-duration underwater recordings facilitates the assessment of fish sound diversity, which serve as an important ecological indicator for understanding community structure and associated changes in response to natural and anthropogenic stressors. Future recommendations include expanding fish sound databases and increasing the number of long-term recording sites will provide opportunities to explore the spatial-temporal dynamics of fish sound diversity, thereby improving conservation management of fish community.
Amorim, M. C. P. (2006). Diversity of Sound Production in Fish. Communication in fishes, 1, 71-104.
Amorim, M. C. P., Knight, M. E., Stratoudakis, Y., & Turner, G. F. (2004). Differences in sounds made by courting males of three closely related Lake Malawi cichlid species. Journal of Fish Biology, 65(5), 1358–1371.
Amorim, M. C. P., Simões, J. M., Fonseca, P. J., & Turner, G. F. (2008). Species differences in courtship acoustic signals among five Lake Malawi cichlid species (Pseudotropheus spp.). Journal of Fish Biology, 72(6), 1355–1368.
Arnold, S., Steneck, R., & Mumby, P. (2010). Running the gauntlet: Inhibitory effects of algal turfs on the processes of coral recruitment. Marine Ecology Progress Series, 414, 91–105.
Bolgan, M., Di Iorio, L., Dailianis, T., Catalan, I. A., Lejeune, P., Picciulin, M., & Parmentier, E. (2022). Fish acoustic community structure in Neptune seagrass meadows across the Mediterranean basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 32(2), 329–347. https://doi.org/10.1002/aqc.3764
Bolgan, M., & Parmentier, E. (2020). The unexploited potential of listening to deep-sea fish. Fish and Fisheries, 21(6), 1238–1252.
Bradbury, J., & Vehrencamp, S. (1998). Principles of animal communication, (Vol. 132). Sunderland, MA: Sinauer Associates.
Brandl, S. J., Hoey, A. S., & Bellwood, D. R. (2014). Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs. Coral Reefs, 33(2), 421–430.
Butler, J., Stanley, J. A., & Butler, M. J. (2016). Underwater soundscapes in near-shore tropical habitats and the effects of environmental degradation and habitat restoration. Journal of Experimental Marine Biology and Ecology, 479, 89–96.
Carriço, R., Silva, M. A., Menezes, G. M., Vieira, M., Bolgan, M., Fonseca, P. J., & Amorim, M. C. P. (2020). Temporal dynamics in diversity patterns of fish sound production in the Condor seamount (Azores, NE Atlantic). Deep Sea Research Part I: Oceanographic Research Papers, 164, 103357.
Chen, C., Lin, T.-H., Watanabe, H. K., Akamatsu, T., & Kawagucci, S. (2021). Baseline soundscapes of deep-sea habitats reveal heterogeneity among ecosystems and sensitivity to anthropogenic impacts. Limnology and Oceanography, 66(10), 3714–3727.
Colleye, O., Vandewalle, P., Lanterbecq, D., Lecchini, D., & Parmentier, E. (2011). Interspecific variation of calls in clownfishes: Degree of similarity in closely related species. BMC Evolutionary Biology, 11(1), 365.
Connaughton, M. A., Taylor, M. H., & Fine, M. L. (2000). Weakfish disturbance calls.
Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. Ensemble machine
learning: Methods and applications, 157-175.
de Groot, S. J. (1984). The impact of bottom trawling on benthic fauna of the North Sea. Ocean Management, 9(3), 177–190.
De, K., Nanajkar, M., Mote, S., & Ingole, B. (2020). Coral damage by recreational diving activities in a Marine Protected Area of India: Unaccountability leading to ‘tragedy of the not so commons.’ Marine Pollution Bulletin, 155, 111190.
Desiderà, E., Guidetti, P., Panzalis, P., Navone, A., Valentini-Poirrier, C., Boissery, P., Gervaise, C., & Di Iorio, L. (2019). Acoustic fish communities: Sound diversity of rocky habitats reflects fish species diversity. Marine Ecology Progress Series, 608, 183–197.
Fine, M. L., & Parmentier, E. (2015). Mechanisms of Fish Sound Production. In F. Ladich (Ed.), Sound Communication in Fishes (pp. 77–126). Springer.
Fine, M. L., & Pennypacker, K. R. (1986). Hormonal basis for sexual dimorphism of the sound-producing apparatus of the oyster toadfish. Experimental Neurology, 92(2), 289–298.
Jan, R.-Q. (1997). Sympatric Spawning of the Damselfishes Chromis fumea and Pomacentrus coelestis on the Northern Coast of Taiwan. ZOOLOGICAL STUDIES-TAIPEI-, 36, 26-32.
Ladich, F. (1989). Sound production by the river bullhead, Cottus gobio L. (Cottidae, Teleostei). Journal of Fish Biology, 35(4), 531–538.
Ladich, F. (2007). Females whisper briefly during sex: Context- and sex-specific differences in sounds made by croaking gouramis. Animal Behaviour, 73(2), 379–387.
Ladich, F. (2014). Fish bioacoustics. Current Opinion in Neurobiology, 28, 121–127.
Ladich, F. (2019). Ecology of sound communication in fishes. Fish and Fisheries, 20(3), 552–563.
Ladich, F. (2022). Shut up or shout loudly: Predation threat and sound production in fishes. Fish and Fisheries, 23(1), 227–238.
Ladich, F., & Bass, A. H. (1996). Sonic/vocal-acousticolateralis pathways in teleost fishes: A transneuronal biocytin study in mochokid catfish. Journal of Comparative Neurology, 374(4), 493–505.
Ladich, F., Bass, A. H., & Farrell, A. P. (2011). Vocal Behavior of Fishes: Anatomy and Physiology. In Encyclopedia of Fish Physiology: FromGenome to Environment.
Ladich, F., & Fine, M. L. (2006). Sound-Generating Mechanisms in Fishes: A Unique Diversity in Vertebrates. Communication in fishes, 1, 3-43.
Lagardere, J. P., & Mallekh, R. (2000). Feeding sounds of turbot žScophthalmus maximus/ and their potential use in the control of food supply in aquaculture I. Spectrum analysis of the feeding sounds. Aquaculture, 189(3-4), 251-258.
Leahy, S. M., McCormick, M. I., Mitchell, M. D., & Ferrari, M. C. O. (2011). To fear or to feed: The effects of turbidity on perception of risk by a marine fish. Biology Letters, 7(6), 811–813.
Lin, T.-H, & Tsao, Y. (2020). Source separation in ecoacoustics: A roadmap towards versatile soundscape information retrieval. Remote Sensing in Ecology and Conservation, 6(3), 236–247.
Lin, T.-H., Akamatsu, T., Sinniger, F., & Harii, S. (2021). Exploring coral reef biodiversity via underwater soundscapes. Biological Conservation, 253, 108901.
Lin, T.-H., Akamatsu, T., & Tsao, Y. (2021). Sensing ecosystem dynamics via audio source separation: A case study of marine soundscapes off northeastern Taiwan. PLOS Computational Biology, 17(2), e1008698.
Lin, T.-H., Fang, S.-H., & Tsao, Y. (2017). Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings. Scientific Reports, 7(1), Article 1.
Lindseth, A., & Lobel, P. (2018). Underwater soundscape monitoring and fish bioacoustics: A review. Fishes, 3(3), 36.
Lobel, P. S. (1989). Ocean current variability and the spawning season of Hawaiian reef fishes. Environmental Biology of Fishes, 24(3), 161–171.
Locascio, J. V., & Burton, M. L. (2016). A passive acoustic survey of fish sound production at Riley’s Hump within Tortugas South Ecological Reserve; implications regarding spawning and habitat use. Fishery Bulletin, 114(1), 103–116.
Looby, A., Vela, S., Cox, K., Riera, A., Bravo, S., Davies, H. L., Rountree, R., Reynolds, L. K., Martin, C. W., Matwin, S., & Juanes, F. (2023). FishSounds Version 1.0: A website for the compilation of fish sound production information and recordings. Ecological Informatics, 74, 101953.
Malfante, M., Mars, J. I., Dalla Mura, M., & Gervaise, C. (2018). Automatic fish sounds classification. The Journal of the Acoustical Society of America, 143(5), 2834–2846.
McClanahan, T. R., Graham, N. A., & Darling, E. S. (2014). Coral reefs in a crystal ball: Predicting the future from the vulnerability of corals and reef fishes to multiple stressors. Current Opinion in Environmental Sustainability, 7, 59–64.
Mok, H.-K., Lin, S.-Y., & Tsai, K.-E. (2011). Underwater Ambient Biological Noise in the Waters on the West Coast of Taiwan. Kuroshio Science 5-1, 51-57
Monczak, A., Berry, A., Kehrer, C., & Montie, E. (2017). Long-term acoustic monitoring of fish calling provides baseline estimates of reproductive timelines in the May River estuary, southeastern USA. Marine Ecology Progress Series, 581, 1–19.
Monczak A., Ji Y., Soueidan J., & Montie E. W. (2019). Automatic detection, classification, and quantification of sciaenid fish calls in an estuarine soundscape in the Southeast United States. PLOS ONE, 14(1), e0209914.
Mooney, T. A., Di Iorio, L., Lammers, M., Lin, T.-H., Nedelec, S. L., Parsons, M., Radford, C., Urban, E., & Stanley, J. (2020). Listening forward: Approaching marine biodiversity assessments using acoustic methods. Royal Society Open Science, 7(8), 201287.
Mouy, X., Black, M., Cox, K., Qualley, J., Dosso, S., & Juanes, F. (2023). Identification of fish sounds in the wild using a set of portable audio‐video arrays. Methods in Ecology and Evolution, 14:2165–2186
Munday, P. L., Jones, G. P., Pratchett, M. S., & Williams, A. J. (2008). Climate change and the future for coral reef fishes. Fish and Fisheries, 9(3), 261–285.
Munger, J., Herrera, D., Haver, S., Waterhouse, L., McKenna, M., Dziak, R., Gedamke, J., Heppell, S., & Haxel, J. (2022). Machine learning analysis reveals relationship between pomacentrid calls and environmental cues. Marine Ecology Progress Series, 681, 197–210.
Palumbi, S. R., Sandifer, P. A., Allan, J. D., Beck, M. W., Fautin, D. G., Fogarty, M. J., Halpern, B. S., Incze, L. S., Leong, J.-A., Norse, E., Stachowicz, J. J., & Wall, D. H. (2009). Managing for ocean biodiversity to sustain marine ecosystem services. Frontiers in Ecology and the Environment, 7(4), 204–211.
Parmentier, E., Colleye, O., Fine, M. L., Frédérich, B., Vandewalle, P., & Herrel, A. (2007). Sound Production in the Clownfish Amphiprion clarkii. Science, 316(5827), 1006–1006.
Parmentier, E., Diogo, R., & Fine, M. L. (2017). Multiple exaptations leading to fish sound production. Fish and Fisheries, 18(5), 958–966.
Parmentier, E., & Fine, M. L. (2016). Fish sound production: insights. In R. A. Suthers, W. T. Fitch, R. R. Fay, & A. N. Popper (Eds.), Vertebrate Sound Production and Acoustic Communication (pp. 19–49). Springer International Publishing.
Parmentier, E., Fine, M. L., & Mok, H.-K. (2016). Sound production by a recoiling system in the pempheridae and terapontidae. Journal of Morphology, 277(6), 717–724.
Parsons, M. J. G., Lin, T.-H., Mooney, T. A., Erbe, C., Juanes, F., Lammers, M., Li, S., Linke, S., Looby, A., Nedelec, S. L., Van Opzeeland, I., Radford, C., Rice, A. N., Sayigh, L., Stanley, J., Urban, E., & Di Iorio, L. (2022). Sounding the Call for a Global Library of Underwater Biological Sounds. Frontiers in Ecology and Evolution, 10, 39.
Porcile, G., Bolla Pittaluga, M., Frascati, A., & Sequeiros, O. E. (2020). Typhoon-induced megarips as triggers of turbidity currents offshore tropical river deltas. Communications Earth & Environment, 1(1), Article 1.
Rice, A. N., & Bass, A. H. (2009). Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: Insights into the diversity of the Batrachoididae. Journal of Experimental Biology, 212(9), 1377–1391.
Rinkevich, B. (1995). Restoration strategies for coral reefs damaged by recreational activities: The use of sexual and asexual recruits. Restoration Ecology, 3(4), 241–251.
Ruppé, L., Clément, G., Herrel, A., Ballesta, L., Décamps, T., Kéver, L., & Parmentier, E. (2015). Environmental constraints drive the partitioning of the soundscape in fishes. Proceedings of the National Academy of Sciences, 112(19), 6092–6097.
Stewart, G., & Al-Khassaweneh, M. (2022). An Implementation of the HDBSCAN* Clustering Algorithm. Applied Sciences, 12(5), Article 5.
Sun, Y., Yen, S., & Lin, T. (2022). soundscape_IR: A source separation toolbox for exploring acoustic diversity in soundscapes. Methods in Ecology and Evolution, 13(11), 2347–2355.
Tavolga, W. N. (1971). 6 Sound production and detection. In W. S. Hoar & D. J. Randall (Eds.), Fish Physiology (Vol. 5, pp. 135–205). Academic Press.
Tellechea, J. S., Teixeira-de Mello, F., Gonzalez-Bergonzoni, I., & Vidal, N. (2011). Sound production and pectoral spine locking in a Neotropical catfish (Iheringichthys labrosus, Pimelodidae). Neotropical Ichthyology, 9(4), 889–894.
Thomas, L., & Marques, T. A. (2012). Passive acoustic monitoring for estimating animal density. Acoustics Today, 8(3), 35.
Tricas, T., & Boyle, K. (2014). Acoustic behaviors in Hawaiian coral reef fish communities. Marine Ecology Progress Series, 511, 1–16.
Ye, Z.-M., Mayfield, A. B., & Fan, T.-Y. (2023). Variable responses to a marine heat wave in five fringing reefs of southern Taiwan. Applied Sciences, 13(9), Article 9.
蘇友寬(2016). 臺灣東北角沿岸仔稚魚季節性組成結構之變化探討. 國立臺灣海洋大學海洋生物研究究所碩士學位論文,1-45頁。