簡易檢索 / 詳目顯示

研究生: 郭瀚揚
Kuo, Han-Yang
論文名稱: 資料探勘應用之研究:零售業的RFM分析架構
A study of data mining application: RFM analytical framework of a retailer
指導教授: 周世玉
Chou, Shih-Yu
學位類別: 碩士
Master
系所名稱: 全球經營與策略研究所
Graduate Institute of Global Business and Strategy
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 53
中文關鍵詞: RFM資料採礦集群分析判別分析決策樹分析
英文關鍵詞: RFM, Data mining, Cluster analysis, Discriminant analysis, Decision tree analysis
DOI URL: http://doi.org/10.6345/NTNU201900931
論文種類: 學術論文
相關次數: 點閱:343下載:67
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在資料庫行銷領域中,RFM模型一直是一個很重要的角色,他能提供一個簡單的框架去量化顧客。隨著時代的演進,RFM模型結合資料採礦能使企業對於顧客的分析更透徹,不論是用於對顧客進行分群或是分析顧客價值。本研究使用公開平台的交易資料進行分析,以真實零售商之交易資料分析該企業的顧客,嘗試以RFM模型結合資料採礦的方法,對客戶進行分群,最後建立預測模型並驗證其預測力,同時本研究也著重在資料前處理的描寫。本研究以二階段集群分析結合RFM指標將顧客分成四群,並且將分群後的結果作為目標變數,以決策樹分析與判別分析建立預測模型,最後發現判別分析之預測率較好,但決策樹擁有較易解釋的規則。

    In the field of database marketing, the Recency, Frequency, Monetary model has always played an important role, it provides a simple framework to quantify customers. With the evolution of the technology, the RFM model combined with data mining enables companies to analyze customers more thoroughly, whether it is used to segment customers or analyze customer value. This study uses the transaction data of the open data platform, and analyzes the customers of the retailer's transaction data. It attempts to combine the data mining method with the RFM model, and then builds the predicting model and verifies its predictability. This study also focuses on the process of data pre-processing. In this study, the two-phase cluster analysis combined with the RFM index divides the customers into four groups, and the results of the grouping are used as the target variables. The prediction model is established by decision tree analysis and discriminant analysis. Finally, the prediction rate of the discriminant analysis is better, but the decision tree is easier to explain.

    摘要 I ABSTRACT II 目錄 III 圖目錄 IV 表目錄 V 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 論文結構 4 第二章 文獻回顧 5 第一節 RFM模型 5 第二節 資料採礦 8 第三節 集群分析 11 第四節 決策樹分析 12 第五節 判別分析 13 第三章 研究方法 14 第一節 研究設計 14 第二節 資料來源及變數說明 16 第三節 分析方法 18 第四章 實證分析 26 第一節 資料前處理 26 第三節 集群分析 36 第四節 建立預測模型 40 第五章 結論與建議 48 第一節 研究發現 48 第二節 研究結論 49 第三節 研究限制與建議 49 參考文獻 51

    一、中文
    呂金河(2005)。多變量分析。台中市: 滄海書局。

    邱宏彬、蘇建源(2004)。一個可彈性支援顧客關係管理與資料庫行銷之模糊 RFM Model。電子商務學報,6(2),149-173。

    徐火志、劉敦仁(2005)。以改良式 RFM 模式結合資料探勘建立客戶分群並提升行銷效益。國立交通大學管理學院碩士論文,新竹市。

    黃俊英(2000)。多變量分析。中國經濟企業研究所出版。

    葉子維(2018)。顧客消費行為分析及行動銀行使用預測-決策樹、隨機森林與判別分析之比較。國立臺北大學統計系碩士論文,新北市。

    簡禎富、許嘉裕(2018)。大數據分析與資料挖礦。新北市:前程。

    二、英文
    Ahmed, S.R. (2004). Application of data mining in retail businesses. IEEE International Conference on Information Technology: Coding and Computing, ITCC'04, 44‐55.

    Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (25-71). Berlin, Heidelberg: Springer.

    Berry, M. J., & Linoff, G. S. (2004). Data mining techniques: for marketing, sales, and customer relationship management: John Wiley & Sons.

    Blattberg, R. C., Kim, B. D., & Neslin, S. A. (2008). Why database marketing?. Database marketing (13-46), New York: Springer

    Bult, J. R., & Wansbeek, T. (1995). Optimal selection for direct mail. Marketing Science, 14(4), 378-394.

    Chan, C. C. H. (2008). Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer. Expert Systems with Applications, 34(4), 2754-2762.

    Chen D., Sain S.L., & Guo K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing & Customer Strategy Management, 19(3), 197-208.

    Chen, B., Tai, P. C., Harrison, R., & Pan, Y. (2005, August). Novel hybrid hierarchical-K-means clustering method (HK-means) for microarray analysis. In 2005 IEEE Computational Systems Bioinformatics Conference-Workshops (CSBW'05) (105-108). IEEE.

    Cullinan, G. J. (1977). Picking them by their batting averages' recency-frequency-monetary method of controlling circulation. Manual release, 2103.

    Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.

    Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179-188.

    Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57-57.

    Giraud-Carrier, C., & Povel, O. (2003). Characterising data mining software. Intelligent Data Analysis, 7(3), 181-192.

    Grupe, F. H., & Mehdi Owrang, M. (1995). Data base mining discovering new knowledge and competitive advantage. Information System Management, 12(4), 26-31.

    Hosseini, S. M. S., Maleki, A., & Gholamian, M. R. (2010). Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications, 37(7), 5259-5264.

    Hsieh, N.-C. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications, 27(4), 623-633.

    Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.

    Kahan, R. (1998). Using database marketing techniques to enhance your one-to-one marketing initiatives. Journal of Consumer Marketing, 15(5), 491-493.

    Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3 (2011), 57-63.

    Kim, H. K., Im, K. H., & Park, S. C. (2010). DSS for computer security incident response applying CBR and collaborative response. Expert Systems with Applications, 37(1), 852-870.

    Kotler, P and Dubois, B (1991) Marketing Management. Paris: Publi-Union.

    Ling, C. X., & Li, C. (1998). Data mining for direct marketing: problems and solutions. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (73-79). AAAI Press.

    Liu, D.-R., & Shih, Y.-Y. (2005). Integrating AHP and data mining for product recommendation based on customer lifetime value. Information & Management, 42(3), 387-400.

    Lumsden, S.-A., Beldona, S., & Morrison, A. M. (2008). Customer value in an all-inclusive travel vacation club: An application of the RFM framework. Journal of Hospitality & Leisure Marketing, 16(3), 270-285.

    Malthouse, E. C., & Blattberg, R. C. (2005). Can we predict customer lifetime value? Journal of Interactive Marketing, 19(1), 2-16.
    Marcus, C. (1998). A practical yet meaningful approach to customer segmentation. Journal of Consumer Marketing, 15(5), 494-504.

    McCluskey, W., & Anand, S. (1999). The application of intelligent hybrid techniques for the mass appraisal of residential properties. Journal of Property Investment & Finance, 17(3), 218-239.

    Miglautsch, J. R. (2000). Thoughts on RFM scoring. Journal of Database Marketing & Customer Strategy Management, 8(1), 67-72.

    Sharma, S. (1995). Applied multivariate techniques: John Wiley & Sons, Inc.

    Sohrabi, B., & Khanlari, A. (2007). Customer lifetime value (CLV) measurement based on RFM model. Iranian Accounting & Auditing Review, 14(47), 7-20.

    Wei, J.-T., Lin, S.-Y., & Wu, H.-H. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199-4206.

    Van Der Aalst, W. (2011). Process mining: discovery, conformance and enhancement of business processes (Vol. 2). Heidelberg: Springer.

    Wu HH., Chang EC., Lo CF. (2009) Applying RFM Model and K-Means Method in Customer Value Analysis of an Outfitter. In: Chou SY., Trappey A., Pokojski J., Smith S. (eds) Global Perspective for Competitive Enterprise, Economy and Ecology(665-672).London: Springer.

    下載圖示
    QR CODE