研究生: |
陳光耀 Chen, Kuang-Yao |
---|---|
論文名稱: |
氣候變遷下各海拔蛾類群聚動態之初探—以太魯閣國家公園為例 Preliminary study on the dynamics of moth community at different altitudes under climate change—Using Taroko National Park as a model system |
指導教授: |
徐堉峰
Hsu, Yu-Feng |
口試委員: |
徐堉峰
Hsu, Yu-Feng 林思民 Lin, Si-Min 楊平世 Yang, Ping-Shih |
口試日期: | 2024/01/12 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 海拔 、蛾類群聚 、物種多樣性 、指標物種 、保育 |
英文關鍵詞: | Altitude, species composition, diversity, indicator species, conservation |
研究方法: | 實驗設計法 、 調查研究 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202400353 |
論文種類: | 學術論文 |
相關次數: | 點閱:88 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球暖化是當今世界所面臨最重要的環境議題之一,尤其對於人類族群及自然生態系統造成的負面影響。在過去的一個世紀來,全球平均地表溫度上升約0.6℃,太魯閣國家公園地區10年來平均溫度也逐步上升。伴隨著全球暖化也影響著全球氣候的變化,自21世紀以來,觀察到許多極端天氣與氣候的變化。臺灣與全球多數地區相同,正面臨著氣候暖化趨勢的影響。
了解生物多樣性對於自然資源保育至關重要,台灣擁有豐富的生物多樣性資源及特有物種,但已建立基本分類及生態資料的種類仍不及台灣全部物種的一半,在缺乏了解的情況下,一些開發行為乃造成自然資源的破壞。在動物類群中,鱗翅目昆蟲為物種多樣性很高的類群之一,是極具有研究價值的類群。蛾類對於氣候、環境變化敏感度高,蛾類的分布情況會隨著不同海拔高度、不同林相及不同的氣候變化而產生不同群集的組合,本研究以紫外線燈定期調查蛾類數量的月變化,希望以本研究結果了解太魯閣國家公園各海拔蛾類多樣性變化。
本研究以太魯閣國家公園為例,於海拔100公尺至3000公尺設置8個主要樣點進行蛾類資源調查,並以蛾類的物種豐富度(species richness)及常用的多樣性指數—Simpson’s index(D’)及Shannon- Winner index (H’),探討蛾類於不同海拔分布情形。結果顯示,本研究共紀錄太魯閣國家公園境內蛾類19科481種2149隻次,且蛾類物種豐富度隨海拔越高而降低,呈現線性遞減關係。而在與過去的監測資料對比下,顯示出除位於高海拔的小風口樣區外,其餘各海拔多樣性皆有顯著下降的趨勢。最後,本實驗嘗試篩選出與各海拔整體群集相關性高的指標物種。藉此指標物種的群聚波動或依其特性能反映不同的環境現況,不僅能了解大範圍的環境變動,亦能探究局部性細微環境變化。
Global warming is one of the most important environmental issues in the world today, chiefly clue to its negative impact on human populations and natural ecosystems. Over the past century, the global average temperature has increased by 0.6 Celsius, and the average temperature in Taroko National Park has also gradually increased over the past 10 years. Global warming also affects global climate change. Since the 21st century, many extreme weather and climate changes have been observed. Taiwan is facing the impact of climate change like most other parts of the world, too.
Understanding biodiversity is one of the most important aspects of natural resource conservation. Taiwan hosts rich biodiversity resources and endemic species, but the basic classification and ecological data for many organisms are still scanty. Human activities have inadvertently resulted in the destruction of natural resources due to the lack of knowledge of these data. Among animal groups, Lepidoptera is one of the groups with high species diversity and research value. Moths are highly sensitive to climate and environmental changes. The distribution of moths may produce different cluster combinations with different altitudes, different forest phases, and different climate changes. The present study uses ultraviolet lamps to regularly investigate monthly changes in the number of moths, with the hope to that use the results of this study to understand the changes in moth diversity across various altitudes in Taroko National Park.
We set up eight main sample sites to investigate moth resources from altitudes of 100 meters to 3,000 meters and calculated the moths’ species richness, the commonly used diversity index— Simpson's index (D') and Shannon-Winner index (H') to explore the distribution of moths at different altitudes. The results showed that the species richness of moth species decreased with increase in altitude, showing a linearly decreasing relationship. Compared to the data collected 10 years ago, except for the Xiao Feng Kou area located at high altitude, the diversity at all other altitudes has a significant downward trend. Finally, this experiment attempts to establish indicator species representing habitats of different altitudes. By monitoring the fluctuations of these indicator species under different environmental conditions, we can not only understand large-scale environmental changes, but also explore local subtle environmental changes.
Beaumont, L. J. and L. Hughes (2002). "Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change." Global Change Biology 8(10): 954-971.https://doi.org/10.1046/j.1365-2486.2002.00490.x
Black, S. H. (2018). Insects and climate change: Variable responses will lead to climate winners and losers. Encyclopedia of the Anthropocene.https://doi.org/10.1016/b978-0-12-809665-9.10265-4
Brehm, G., et al. (2007). "The role of environment and mid‐domain effect on moth species richness along a tropical elevational gradient." Global Ecology and Biogeography 16(2): 205-219. https://doi.org/10.1111/j.1466-8238.2006.00281.x
Colwell, R. K., & Lees, D. C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in ecology & evolution, 15(2), 70-76.https://doi.org/10.1016/S0169-5347 (99)01767-X
Colwell, R. K., Rahbek, C., & Gotelli, N. J. (2004). The mid-domain effect and species richness patterns: what have we learned so far?. The American Naturalist, 163(3), E1-E23. https://doi.org/10.1086/382056
Currie, D. J., & Kerr, J. T. (2008). Tests of the mid‐domain hypothesis: a review of the evidence. Ecological Monographs, 78(1), 3-18. https://doi.org/10.1890/06-1302.1
Dennis, R. L., et al. (2004). "Host plants and butterfly biology. Do host‐plant strategies drive butterfly status?" Ecological Entomology 29(1): 12-26.https://doi.org/10.1111/j.1365-2311.2004.00572.x
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668-6672. https://doi.org/10.1073/pnas.0709472105
Dyer, L. A., Singer, M. S., Lill, J. T., Stireman, J. O., Gentry, G. L., Marquis, R. J., ... & Coley, P. D. (2007). Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448(7154), 696-699. https://doi.org/10.1038/nature05884
Field, C. B., Barros, V. R., Mastrandrea, M. D., Mach, K. J., Abdrabo, M. A., Adger, W. N., ... & Yohe, G. W. (2015). Summary for policymakers. In Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-32). Cambridge University Press.
Forister, M. L., Pelton, E. M., & Black, S. H. (2019). Declines in insect abundance and diversity: We know enough to act now. Conservation Science and Practice, 1(8), e80. https://doi.org/10.1111/csp2.80
Gullan, P. J., & Cranston, P. S. (2014). The insects: an outline of entomology. John Wiley & Sons.
Houghton, J. (2005). Global warming. Reports on progress in physics, 68(6), 1343. http://taibnet.sinica.edu.tw
IPCC, I. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change.
Kerr, R. A. (1992). Greenhouse science survives skeptics. Science, 256(5060), 1138-1140. https://10.1126/science.256.5060.1138.b
Kluge, J., Kessler, M., & Dunn, R. R. (2006). What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global ecology and biogeography, 15(4), 358-371. https://doi.org/10.1111/j.1466-822X.2006.00223.x
Kocmánková, E., Trnka, M., Juroch, J., Dubrovský, M., Semerádová, D., Možný, M., & Žalud, Z. (2009). Impact of climate change on the occurrence and activity of harmful organisms. Plant Protection Science, 45(Special Issue), Impact-of.http://doi.org/10.17221/2835-PPS
Kremen, C. (1992). Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological applications, 2(2), 203-217.https://doi.org/10.2307/1941776
McCain, C. M. (2004). The mid‐domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography, 31(1), 19-31. https://doi.org/10.1046/j.0305-0270.2003.00992.x
Pereira, H. M., et al. (2013). "Essential biodiversity variables." Science 339(6117): 277-278. https://doi.org/10.1126/science.1229931
Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for biodiversity. Journal of Biogeography, 47(2), 315-325.https://doi.org/10.1111/jbi.13731
Rahbek, C. (1995). "The elevational gradient of species richness: a uniform pattern?" Ecography 18(2): 200-205. http://www.jstor.org/stable/3682769
Sánchez-Bayo, F., & Wyckhuys, K. A. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological conservation, 232, 8-27.https://doi.org/10.1016/j.biocon.2019.01.020
Schneider, S. (1990). The global warming debate: Science or politics?. Environmental science & technology, 24(4), 432-435.https://doi.org/10.1021/es00074a602
Schneider, S. H. (1989). The changing climate. Scientific American, 261(3), 70-79.http://www.jstor.org/stable/24987396
Schneider, S. H. (1994). Detecting climatic change signals: are there any" fingerprints"?. Science, 263(5145), 341-347.https://doi.org/10.1126/science.263.5145.341
Shao, K. T., Peng, C. I., Yen, E., Lai, K. C., Wang, M. C., Lin, J., ... & Chen, S. Y. (2007). Integration of biodiversity databases in Taiwan and linkage to global databases. Data Science Journal, 6, S2-S10. https://doi.org/10.2481/dsj.6.S2
Steffen, W., et al. (2015). "Planetary boundaries: Guiding human development on a changing planet." Science 347(6223): 1259855.https://doi.org10.1126/science.1259855
Stevens, G. C. (1992). The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. The American Naturalist, 140(6), 893-911.https://doi.org/10.1086/285447
Tenorio, E. A., Montoya, P., Norden, N., Rodríguez‐Buriticá, S., Salgado‐Negret, B., & Gonzalez, M. A. (2023). Mountains exhibit a stronger latitudinal diversity gradient than lowland regions. Journal of Biogeography, 50(6), 1026-1036.https://doi.org/10.1111/jbi.14597
van Langevelde, F., Braamburg‐Annegarn, M., Huigens, M. E., Groendijk, R., Poitevin, O., van Deijk, J. R., ... & WallisDeVries, M. F. (2018). Declines in moth populations stress the need for conserving dark nights. Global change biology, 24(3), 925-932. https://doi.org/10.1111/gcb.14008
Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual review of entomology, 65, 457-480. https://doi.org/10.1146/annurev-ento-011019-025151
Watson, R. T., Zinyowera, M. C., Moss, R. H., & Dokker, D. J. (1996). Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change.
Wu, S., & Shiao, M. T. (2023). Temporal and forest-type related dynamics of moth assemblages in a montane cloud forest in subtropical Taiwan. Journal of Asia-Pacific Entomology, 26(2), 102073. https://doi.org/10.1016/j.aspen.2023.102073
Zapata, F. A., Gaston, K. J., & Chown, S. L. (2003). Mid‐domain models of species richness gradients: assumptions, methods and evidence. Journal of Animal Ecology, 72(4), 677-690. https://doi.org/10.1046/j.1365-2656.2003.00741.x
王效岳(1993a)。認識台灣的昆蟲2。鱗翅目─晝行性蛾類。淑馨出版社。
王效岳(1993b)。認識台灣的昆蟲4 鱗翅目-毒蛾科。淑馨出版社。
王效岳(1994a)。認識台灣的昆蟲6 鱗翅目-王蛾科、木蠹蛾科。淑馨出版社。
王效岳(1994b)。認識臺灣的昆蟲7 燈蛾科。淑馨出版社。
王效岳(1994c)。認識臺灣的昆蟲8 夜蛾科-台灣及其他地區之比較。淑馨出版社。
王效岳(1995a)。認識台灣的昆蟲12 斑蛾和其他一些白天活動的蛾類。淑馨出版社。
王效岳(1995b)。認識台灣的昆蟲13 夜蛾科-台灣鄰近地區的相關種類。淑馨出版社。
王效岳(1995c)。認識台灣的昆蟲14 夜蛾科-台灣鄰近地區的相關種類。淑馨出版社。
王效岳(1995d)。認識臺灣的昆蟲10 籮紋蛾科、帶蛾科、大鈎蛾科、鈎蛾科、舟蛾科。淑馨出版社。
王效岳(1995e)。認識臺灣的昆蟲9 蠶蛾科、波紋蛾科、刺蛾科、枯葉蛾科、天蛾科。淑馨出版社。
王效岳(1996a)。認識台灣的昆蟲15 夜蛾科-台灣鄰近地區的相關種類。淑馨出版社。
王效岳(1996b)。認識台灣的昆蟲17 蛾類增補篇。淑馨出版社。
王效岳(1997)。臺灣尺蛾科圖鑑〈1〉。臺灣省立博物館。
王效岳(1998)。臺灣尺蛾科圖鑑〈2〉。臺灣省立博物館。
王效岳(2000a)。認識台灣的昆蟲19 螟蛾總科(螟蛾科、草螟科)。淑馨出版社。
王效岳(2000b)。認識台灣的昆蟲20 長角蛾科、殼蛾科、麥蛾科和其他一些小蛾類。淑馨出版社。
王效岳(2001)。台灣夜蛾科彩色圖鑑。宜蘭縣自然史教育館。
吳士瑋(2023)。台灣產蝶蛾圖鑑。http://dearlep.tw
岸田泰則(1977-1982)。「台湾蛾類図說」 (1)-(40)。月刊むし73-140。
岸田泰則編(2011a)。日本產蛾類標準圖鑑I。株式會社學研教育出版。
岸田泰則編(2011b)。日本產蛾類標準圖鑑II。株式會社學研教育出版。
施禮正、林旭宏(2020)。路邊有蛾-蘇花公路沿線蛾類調查. 自然保育季刊, (112), 46-53.
孫旻璇(2009)。不同海拔的蝶類多樣性及其有潛力指標物種-以太魯閣國家公園為例。國立師範大學生命科學系碩士論文。
徐堉峰(2019)。太魯閣國家公園蛾類多樣性研究。內政部營建署太魯閣國家公園管理處。
徐堉峰、楊平世、呂至堅、孫旻璇、陳建仁、林佳宏、王俊凱(2006)。太魯閣國家公園昆蟲群聚與功能之研究(一)。內政部營建署太魯閣國家公園管理處。
徐堉峰、楊平世、呂至堅、孫旻璇、陳建仁、林佳宏、王俊凱(2007)。太魯閣國家公園昆蟲群聚與功能之研究(二)。內政部營建署太魯閣國家公園管理處。
徐國士、林則桐、陳玉峰、呂勝由(1984)。太魯閣國家公園植物生態資源調查報告。內政部營建署。
徐靖雯(2006)。Bray-Crutis 指標與其他相似性指標之模擬探討。國立清華大學統計學研究所碩士論文。
張保信(1989a)。台灣蛾類圖說(一)。台灣省立博物館。
張保信(1989b)。台灣蛾類圖說(二)。台灣省立博物館。
張保信(1990a)。台灣蛾類圖說(三)。台灣省立博物館。
張保信(1990b)。台灣蛾類圖說(四)。台灣省立博物館。
張保信(1991)。台灣蛾類圖說(五)。台灣省立博物館。
許晃雄、周佳、吳宜昭、盧孟明、陳正達、陳永明(2012)。台灣氣候變遷的關鍵議題. 台灣醫學, 16(5), 459-470.
許皓捷(2003)。台灣山區鳥類群聚的空間及季節變異。台大動物學研究所。博士論文。
許皓捷(2006)。太魯閣國家公園鳥類群聚之研究(一)。內政部營建署太魯閣國家公園管理處。
傅建明、左漢榮、林旭宏(2013)。合歡山的蛾。行政院農業委員會特有生物研究保育中心。
傅建明、左漢榮(2002)。鞍馬山的蛾(1)。台中縣鄉土自然研究會。
傅建明、左漢榮(2004)。鞍馬山的蛾(2)。台中縣鄉土自然研究會。
楊平世(1989)。太魯閣國家公園之昆蟲相研究。內政部營建署太魯閣國家公園管理處。
臺灣氣候變遷推估與資訊平台:臺灣氣候變遷科學報告 2011。行政院國家科學委員會,2011:362 頁。
鍾國芳、邵廣昭(2022)。臺灣物種名錄。 https://taicol.tw