簡易檢索 / 詳目顯示

研究生: 雷承維
Lei, Cheng-Wei
論文名稱: 非監督式深度學習系統應用於AOI檢測之研究
Unsupervised Deep Learning System for AOI Detection
指導教授: 黃文吉
Hwang, Wen-Jyi
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 45
中文關鍵詞: 自動光學檢測異常檢測自編碼器深度學習類神經網路全卷積網路語義分割
DOI URL: http://doi.org/10.6345/NTNU202001296
論文種類: 學術論文
相關次數: 點閱:314下載:70
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出並開發基於非監督式深度學習的表面瑕疵檢測系統,論文所提
    出之研究內容,以檢測高階圖形處理器PCI Express金手指表面作為主要應用範例。
    在開發平台上,本實驗以Python為主要系統建構語言;在深度學習實作
    上,Python提供完整以及快速的開發工具,也提供相當充足的傳統影像處理演算法函式,讓實驗進行更為方便。
    本實驗應用了Autoencoder模型的特性,即訓練實驗模型對目標影像的還原能力,檢測時經由比較輸入與輸出之間的差異來找出表面瑕疵。由於影像內容包含鍍金條、底板和部分PCB零件焊貼表面,在目標不僅侷限於鍍金條的表面部分的條件下,本實驗的最終重點在於如何使整體系統對不同表面內容擁有優良的檢測適性。

    摘要 ii 目錄 iii 表目錄 iv 圖目錄 v 第1章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 1-3 研究貢獻 5 第2章 背景知識探討 6 2-1 現有的檢測應用 6 2-2 本實驗相關之深度學習 10 2-2-1 卷積神經網路 10 2-2-2 Autoencoder 11 2-2-3 Fully Convolutional Network 15 第3章 演算法則與系統介紹 17 3-1 資料收集與模型訓練 19 3-1-1 資料收集 19 3-1-2 模型訓練 21 3-2 模型預測與分割演算法 24 3-2-1 Autoencoder模型與其預測 24 3-2-2 FCN模型與其預測 26 3-2-3 區域分割演算法 28 3-3 量測方法 29 3-4 檢測結果視覺化 33 第4章 實驗介紹與結果分析 34 4-1 實驗介紹 34 4-1-1 實驗整體流程 34 4-1-2 實驗環境 35 4-1-3 實驗樣品 35 4-2 檢測之訓練集與測試集 36 4-3 實驗結果與視覺化 37 4-3-1 深度學習系統正確率 38 4-3-2 實驗結果之視覺化 39 第5章 結論與未來方向 43 參考文獻 44

    [1] Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3465-3471.

    [2] Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., & De Schutter, B. (2016, July). Deep convolutional neural networks for detection of rail surface defects. In 2016 International joint conference on neural networks (IJCNN) (pp. 2584-2589).

    [3] Racki, D., Tomazevic, D., & Skocaj, D. (2018, March). A compact convolutional neural network for textured surface anomaly detection. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1331-1339).

    [4] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

    [5] Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2020). Segmentation-based deep-learning approach for surface-defect detection. Journal of Intelligent Manufacturing, 31(3), 759-776.

    [6] Qiu, L., Wu, X., & Yu, Z. (2019). A high-efficiency fully convolutional networks for pixel-wise surface defect detection. IEEE Access, 7, 15884-15893.

    [7] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

    [8] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).

    [9] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

    [10] He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity mappings in deep residual networks. In European conference on computer vision (pp. 630-645). Springer, Cham.

    [11] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

    [12] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

    [13] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A., & Bottou, L. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research, 11(12).

    [14] Mei, S., Yang, H., & Yin, Z. (2018). An unsupervised-learning-based approach for automated defect inspection on textured surfaces. IEEE Transactions on Instrumentation and Measurement, 67(6), 1266-1277.

    [15] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).

    [16] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).

    下載圖示
    QR CODE