簡易檢索 / 詳目顯示

研究生: 邱莉婷
論文名稱: 利用化學酵素合成兩價以及四價唾液酸化樹枝狀分子:與流行性感冒病毒H5N1上之HA親和力分析
指導教授: 張定國
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 108
中文關鍵詞: 樹枝狀分子唾液酸流行性感冒病毒化學酵素催化固相胜肽合成
英文關鍵詞: dendrimer, α2,6-sialotransferase, SPPS, influenza, sialic acid
論文種類: 學術論文
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質與多醣的作用力 (Protein-glycan interaction) 在生化反應過程中扮演著很重要的角色,其參與的範圍包括: 細胞黏著 (cell adhesion)、血管新生(Angiogenesis) 以及免疫反應 (Imunity)。
    近年來,流行性感冒病毒不僅在世界各地流行,且出現跨越物種的新型病毒而造成死亡。病毒在進入宿主的階段, 病毒上的HA 會辨識宿主的唾液酸 (SA),為解開病毒傳染禽類與人類間重要的關鍵因素,HA 與唾液酸間作用力的研究也就變得相當的重要。但是 HA 與 單一的唾液酸共軛物 (例如: 3’SL 以及6,SL ) 之間的作用力很弱 (只有 mM等級),使得研究較為不易,為改善此缺點,我們設計了利用樹狀分子 (dendrimer) 末端帶有多價鍵結的特性,將唾液酸共軛物修飾在樹枝狀分子末端,以提高醣類與蛋白質間的親和力 (binding affinity)。
    在本篇論文中,我們建立了一套有效率的化學酵素合成系統,藉由固相胜肽合成法 (SPPS) 合成具有兩價以及四價的乳糖化樹枝狀高分子,再利用 α2,6-唾液酸轉移酶 (α2,6-sialotransferase) 將 SA 修飾在乳糖的六號碳位置上,其催化產率大於 90%,最後將合成好的唾液酸化乳糖樹枝狀化合物與兩種類型的流行性感冒病毒蛋白 (H5N1原生株以及突變株 L133S) 做親合力 (KD) 測試。其中, G1-PEG-26SL (16) 與原生株的HA以及突變株L133S HA之親和力,分別比原本α2,6單醣提高至4000倍與605倍。

    Protein-carbohydrate interaction plays an important role in cell adhesion、angiogenesis and immunity. In particular, the transmission of human and avian influenza viruses relies on the engagement of the viral envelope protein hemagglutinin (HA) to the sialic acid (SA)-terminated carbohydrate side chain on the host cell. The host cell tropism was determined by the α-glycosidic linkage between SA and penultimate sugar; namely the avian influenza viruses preferentially bind a-2,3-liked sialyloligosacchrides while the human influenza viruses bind to a-2,6-liked ones.
    In order to monitor the SA/oligosaccharide-HA interaction, we have synthesized poly (L-lysine) dendrimer scaffold conjugated to 2 and 4 α-2,6 sialylactose units using 2,6-sialotransferase in a peptide synthesizer. These α-2,6 sialylactose clusters-HA interaction are measured by surface plasmon resonance spectroscopy. Both the wild type and L133S mutant HAs were tested for α-2,6 sialylactose binding. It was found that the binding avidity of G1-PEG-26SL was 4000 and 605 fold more effective than the monomeric α2-6 sialylactose for the wild type and L133S HA, respectively.

    中文摘要 i 英文摘要 ii 第一章 緒論 1.1流行性感冒病毒(Influenza virus) 1.1.1流行病學 1 1.1.2流行性感冒病毒A的結構 2 1.1.3流行性感冒病毒A蛋白的功能 3 1.1.4流行性感冒病毒A的生活史 4 1.2樹枝狀分子(dendrimer) 1.2.1樹枝狀分子的歷史與應用 6 1.2.2樹枝狀分子的合成 9 1.3樹枝狀分子在流行性感冒病研究上的應用 1.3.1流行性感冒病毒唾液酸(sialic acid)之間的作用 11 1.3.2醣類修飾在高分子之相關研究 14 1.3.3醣類修飾在樹枝狀分子之相關研究 16 1.3.4醣類修飾在poly(L-lysine)樹枝狀分子之相關研究 17 1.4實驗目的 第二章結果與討論 2.1合成 2.1.1合成化合物3 20 2.1.1合成化合物7b、9b 22 2.1.3合成含有一段旋轉空間的14b、18b 24 2.2α2,6-唾液酸轉移酶(α2,6-sialotransferase)催化 2.2.1測試純化後的α2,6-唾液酸轉移酶之活性 26 2.1.2合成化合物 7b、9b 22 2.1.3合成含有一段旋轉空間的 14b、18b 24 2.2α2,6-唾液酸轉移酶 (α2,6-sialotransferase) 催化 2.2.1測試純化後的 α2,6-唾液酸轉移酶之活性 26 2.2.2合成化合物10、11、16、19 27 2.3α2,6-唾液酸化合物與 HA 做親和力測試 35 2.4未來展望 41 第三章結論 42 第四章實驗 4.1實驗設定 44 4.2資料庫分析以及分子模擬計算 45 4.3合成化合物3 4.3.1化合物 1 47 4.3.2化合物 2 48 4.3.3化合物 3 49 4.4 合成化合物 7b、9b、14b和18b 4.4.1化合物7b 50 4.4.2化合物9b 51 4.4.3化合物14b 52 4.4.4化合物18b 53 4.5 化學酵素合成10、11、16和19 4.5.1定量α2,6-唾液酸轉移酶 54 4.5.2測試α2,6-唾液酸轉移酶之活性 54 4.5.3化合物10 56 4.5.4 化合物11 57 4.5.5 化合物16 58 4.5.6 化合物19 59 4.6 唾液酸化樹枝狀分子與 HA 進行結合力測試 4.6.1 純化 H5N1 原生型以及突變株 L133S HA 60 4.6.2 定量 H5N1 原生株以及突變株的 L133S HA 61 4.6.3 L1-SPR 62 第五章 文獻 63 第六章 NMR 以及 Mass 70

    1 Stamboulian, D., Bonvehi, P.E., Nacinovich, F.M., & Cox, N., Influenza. Infectious Disease Clinics of North America 14 (1), 141-161(2000).
    2 Johnson, N.P.A.S. & Mueller, J., Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic. Bulletin of the History of Medicine 76 (1), 105-115 (2002).
    3 Tatem, A.J., Rogers, D.J., & Hay, S.I., Global transport networks and infectious disease spread. Adv Parasitol 62, 293-343 (2006).
    4 Horimoto, T. & Kawaoka, Y., Influenza: Lessons from past pandemics, warnings from current incidents. Nature Reviews Microbiology 3 (8), 591-600 (2005).
    5 Russell, C.J. & Webster, R.G., The genesis of a pandemic influenza virus. Cell 123 (3), 368-371 (2005).
    6 Reid, A.H., Taubenberger, J.K., & Fanning, T.G., Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nature Reviews Microbiology 2 (11), 909-914 (2004).
    7 Ghedin, E., Sengamalay, N.A., Shumway, M., Zaborsky, J., Feldblyum, T., Subbu, V., Spiro, D.J., Sitz, J., Koo, H., Bolotov, P., Dernovoy, D., Tatusova, T., Bao, Y.M., St George, K., Taylor, J., Lipman, D.J., Fraser, C.M., Taubenberger, J.K., & Salzberg, S.L., Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437 (7062), 1162-1166 (2005).
    8 Kaiser, J., A one-size-fits-all flu vaccine? Science 312 (5772), 380-382 (2006).
    9 Skehel, J.J. & Wiley, D.C., Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annual Review of Biochemistry 69, 531-569 (2000).
    10 Bhatia, A. & Kast, R.E., How influenza's neuraminidase promotes virulence and creates localized lung mucosa immunodeficiency. Cellular & Molecular Biology Letters 12 (1), 111-119 (2007).
    11 Barman, S., Adhikary, L., Chakrabarti, A.K., Bernas, C., Kawaoka, Y., & Nayak, D.P., Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza A virus neuraminidase in raft association and virus budding. Journal of Virology 78 (10), 5258-5269 (2004).
    12 Knossow, M. & Skehel, J.J., Variation and infectivity neutralization in influenza. Immunology 119 (1), 1-7 (2006).
    13 Tarendeau, F., Boudet, J., Guilligay, D., Mas, P.J., Bougault, C.M., Boulo, S., Baudin, F., Ruigrok, R.W.H., Daigle, N., Ellenberg, J., Cusack, S., Simorre, J.P., & Hart, D.J., Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nature Structural & Molecular Biology 14 (3), 229-233 (2007).
    14 Ye, Z.P., Pal, R., Fox, J.W., & Wagner, R.R., Functional and Antigenic Domains of the Matrix (M1) Protein of Influenza-a Virus. Journal of Virology 61 (2), 239-246 (1987).
    15 Pinto, L.H. & Lamb, R.A., Controlling influenza virus replication by inhibiting its proton channel. Molecular Biosystems 3 (1), 18-23 (2007).
    16 Bui, M., Myers, J.E., & Whittaker, G.R., Nucleo-cytoplasmic localization of influenza virus nucleoprotein depends on cell density and phosphorylation. Virus Research 84 (1-2), 37-44 (2002).
    17 Shriver, Z., Raman, R., Viswanathan, K., & Sasisekharan, R., Context-Specific Target Definition in Influenza A Virus Hemagglutinin-Glycan Receptor Interactions. Chemistry & Biology 16 (8), 803-814 (2009).
    18 Flory, P.J., Molecular size distribution in three dimensional polymers. II. Trifunctional branching units. Journal of the American Chemical Society 63, 3091-3096 (1941).
    19 Buhleier, E., Wehner, W., & Vogtle, F., Cascade-Chain-Like and Nonskid-Chain-Like Syntheses of Molecular Cavity Topologies. Synthesis-Stuttgart (2), 155-158 (1978).
    20 Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., & Smith, P., A New Class of Polymers - Starburst-Dendritic Macromolecules. Polymer Journal 17 (1), 117-132 (1985).
    21 Newkome, G.R., Yao, Z.Q., Baker, G.R., & Gupta, V.K., Micelles .1. Cascade Molecules - a New Approach to Micelles - a [27]-Arborol. Journal of Organic Chemistry 50 (11), 2003-2004 (1985).
    22 Rolland, O., Turrin, C.O., Caminade, A.M., & Majoral, J.P., Dendrimers and nanomedicine: multivalency in action. New Journal of Chemistry 33 (9), 1809-1824 (2009).
    23 Sarin, H., Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J Transl Med 7, 77 (2009).
    24 Pillow, J.N.G., Halim, M., Lupton, J.M., Burn, P.L., & Samuel, I.D.W., A facile iterative procedure for the preparation of dendrimers containing luminescent cores and stilbene dendrons. Macromolecules 32 (19), 5985-5993 (1999).
    25 Mynar, J.L., Lowery, T.J., Wemmer, D.E., Pines, A., & Frechet, J.M.J., Xenon biosensor amplification via dendrimer-cage supramolecular constructs. Journal of the American Chemical Society 128 (19), 6334-6335 (2006).
    26 Lagnoux, D., Delort, E., Douat-Casassus, C., Esposito, A., & Reymond, J.L., Synthesis and esterolytic activity of catalytic peptide dendrimers. Chemistry-a European Journal 10 (5), 1215-1226 (2004).
    27 Amir, R.J., Pessah, N., Shamis, M., & Shabat, D., Self-immolative dendrimers. Angewandte Chemie-International Edition 42 (37), 4494-4499 (2003).
    28 Satoh, N., Nakashima, T., & Yamamoto, K., Metal-assembling dendrimers with a triarylamine core and their application to a dye-sensitized solar cell. Journal of the American Chemical Society 127 (37), 13030-13038 (2005).
    29 Boas, U. & Heegaard, P.M.H., Dendrimers in drug research. Chemical Society Reviews 33 (1), 43-63 (2004).
    30 Cloninger, M.J., Biological applications of dendrimers. Current Opinion in Chemical Biology 6 (6), 742-748 (2002).
    31 Dennig, J. & Duncan, E., Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. J Biotechnol 90 (3-4), 339-347 (2002).
    32 Lee, H. & Larson, R.G., Multiscale Modeling of Dendrimers and Their Interactions with Bilayers and Polyelectrolytes. Molecules 14 (1), 423-438 (2009).
    33 Yu, H., Huang, S.S., Chokhawala, H., Sun, M.C., Zheng, H.J., & Chen, X., Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: A P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angewandte Chemie-International Edition 45 (24), 3938-3944 (2006).
    34 Medina, S.H. & El-Sayed, M.E.H., Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chemical Reviews 109 (7), 3141-3157 (2009).
    35 Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., & Smith, P., Dendritic Macromolecules - Synthesis of Starburst Dendrimers. Macromolecules 19 (9), 2466-2468 (1986).
    36 Hawker, C.J. & Frechet, J.M.J., Preparation of Polymers with Controlled Molecular Architecture - a New Convergent Approach to Dendritic Macromolecules. Journal of the American Chemical Society 112 (21), 7638-7647 (1990).
    37 Blix, F.G., Gottschalk, A., & Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature 179 (4569), 1088-1088 (1957).
    38 Angata, T. & Varki, A., Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102 (2), 439-469 (2002).
    39 Varki, A., Biological Roles of Oligosaccharides - All of the Theories Are Correct. Glycobiology 3 (2), 97-130 (1993).
    40 Varki, A., Sialic acids in human health and disease. Trends Mol Med 14 (8), 351-360 (2008).
    41 Padler-Karavani, V., Yu, H., Cao, H., Chokhawala, H., Karp, F., Varki, N., Chen, X., & Varki, A., Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18 (10), 818-830 (2008).
    42 Hedlund, M., Padler-Karavani, V., Varki, N.M., & Varki, A., Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A 105 (48), 18936-18941 (2008).
    43 Chandrasekaran, A., Srinivasan, A., Raman, R., Viswanathan, K., Raguram, S., Tumpey, T.M., Sasisekharan, V., & Sasisekharan, R., Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 26 (1), 107-113 (2008).
    44 Ogata, M., Murata, T., Murakami, K., Suzuki, T., Hidari, K.I.P.J., Suzuki, Y., & Usui, T., Chemoenzymatic synthesis of artificial glycopolypeptides containing multivalent sialyloligosaccharides with a gamma-polyglutamic acid backbone and their effect on inhibition of infection by influenza viruses. Bioorganic & Medicinal Chemistry 15 (3), 1383-1393 (2007).
    45 Kale, R.R., Mukundan, H., Price, D.N., Harris, J.F., Lewallen, D.M., Swanson, B.I., Schmidt, J.G., & Lyer, S.S., Detection of intact influenza viruses using biotinylated biantennary S-sialosides. Journal of the American Chemical Society 130 (26), 8169-8171 (2008).
    46 Smith, E.A., Thomas, W.D., Kiessling, L.L., & Corn, R.M., Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J Am Chem Soc 125 (20), 6140-6148 (2003).
    47 Rini, J.M., Lectin structure. Annu Rev Biophys Biomol Struct 24, 551-577 (1995).
    48 Chabre, Y.M., Contino-Pepin, C., Placide, V., Shiao, T.C., & Roy, R., Expeditive synthesis of glycodendrimer scaffolds based on versatile TRIS and mannoside derivatives. J Org Chem 73 (14), 5602-5605 (2008).
    49 Marra, A., Moni, L., Pazzi, D., Corallini, A., Bridi, D., & Dondoni, A., Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org Biomol Chem 6 (8), 1396-1409 (2008).
    50 Matrosovich, M. & Klenk, H.D., Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev Med Virol 13 (2), 85-97 (2003).
    51 Glick, G.D., Toogood, P.L., Wiley, D.C., Skehel, J.J., & Knowles, J.R., Ligand recognition by influenza virus. The binding of bivalent sialosides. J Biol Chem 266 (35), 23660-23669 (1991).
    52 Reuter, J.D., Myc, A., Hayes, M.M., Gan, Z.H., Roy, R., Qin, D.J., Yin, R., Piehler, L.T., Esfand, R., Tomalia, D.A., & Baker, J.R., Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. Bioconjugate Chemistry 10 (2), 271-278 (1999).
    53 Totani, K., Kubota, T., Kuroda, T., Murata, T., Hidari, K.I.P.J., Suzuki, T., Suzuki, Y., Kobayashi, K., Ashida, H., Yamamoto, K., & Usui, T., Chemoenzymatic synthesis and application of glycopolymers containing multivalent sialyloligosaccharides with a poly(L-glutamic acid) backbone for inhibition of infection by influenza viruses. Glycobiology 13 (5), 315-326 (2003).
    54 Matsuoka, K., Terabatake, M., Umino, A., Esumi, Y., Hatano, K., Terunuma, D., & Kuzuhara, H., Carbosilane dendrimers bearing globotriaoses: syntheses of globotrioasyl derivative and introduction into carbosilane dendrimers. Biomacromolecules 7 (8), 2274-2283 (2006).
    55 Kantchev, E.A., Chang, C.C., Cheng, S.F., Roche, A.C., & Chang, D.K., Direct solid-phase synthesis and fluorescence labeling of large, monodisperse mannosylated dendrons in a peptide synthesizer. Org Biomol Chem 6 (8), 1377-1385 (2008).
    56 Oka, H., Onaga, T., Koyama, T., Guo, C.T., Suzuki, Y., Esumi, Y., Hatano, K., Terunuma, D., & Matsuoka, K., Sialyl alpha(2-->3) lactose clusters using carbosilane dendrimer core scaffolds as influenza hemagglutinin blockers. Bioorg Med Chem Lett 18 (15), 4405-4408 (2008).
    57 Roy, R., Pon, R.A., Tropper, F.D., & Andersson, F.O., Michael Addition of Poly-L-Lysine to N-Acryloylated Sialosides - Syntheses of Influenza-a Virus Hemagglutinin Inhibitor and Group-B Meningococcal Polysaccharide Vaccines. Journal of the Chemical Society-Chemical Communications (3), 264-265 (1993).
    58 Roy, R., Zanini, D., Meunier, S.J., & Romanowska, A., Solid-Phase Synthesis of Dendritic Sialoside Inhibitors of Influenza-a Virus Hemagglutinin. Journal of the Chemical Society-Chemical Communications (24), 1869-1872 (1993).
    59 Palcic, M.M., Li, H., Zanini, D., Bhella, R.S., & Roy, R., Chemoenzymatic synthesis of dendritic sialyl Lewis(x). Carbohydrate Research 305 (3-4), 433-442 (1997).
    60 Matsuoka, K., Terabatake, M., Umino, A., Esumi, Y., Hatano, K., Terunuma, D., & Kuzuhara, H., Carbosilane dendrimers bearing globotriaoses: Syntheses of globotrioasyl derivative and introduction into carbosilane dendrimers. Biomacromolecules 7 (8), 2274-2283 (2006).
    61 Kantchev, E.A.B., Chang, C.C., & Chang, D.K., Direct Fmoc/tert-Bu solid phase synthesis of octamannosyl polylysine dendrimer-peptide conjugates. Biopolymers 84 (2), 232-240 (2006).
    62 Kantchev, E.A.B., Chang, C.C., Cheng, S.F., Roche, A.C., & Chang, D.K., Direct solid-phase synthesis and fluorescence labeling of large, monodisperse mannosylated dendrons in a peptide synthesizer. Organic & Biomolecular Chemistry 6 (8), 1377-1385 (2008).
    63 Cheng, J.S., Huang, S.S., Yu, H., Li, Y.H., Lau, K., & Chen, X., Trans-sialidase activity of Photobacterium damsela alpha 2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 20 (2), 260-268 (2010).
    64 Wilson, J.C., Kiefel, M.J., Angus, D.I., & von Itzstein, M., Investigation of the stability of thiosialosides toward hydrolysis by sialidases using NMR spectroscopy. Org Lett 1 (3), 443-446 (1999).
    65 Teo, C.F., Hwang, T.S., Chen, P.H., Hung, C.H., Gao, H.S., Chang, L.S., & Lin, C.H., Synthesis of sialyl T-N Glycopeptides - Enzymatic sialylation by alpha 2,6-sialyltransferase from Photobacterium damsela. Advanced Synthesis & Catalysis 347 (7-8), 967-972 (2005).
    66 Yu, H., Chokhawala, H.A., Varki, A., & Chen, X., Efficient chemoenzymatic synthesis of biotinylated human serum albumin-sialoglycoside conjugates containing O-acetylated sialic acids. Organic & Biomolecular Chemistry 5 (15), 2458-2463 (2007).
    67 Ogata, M., Nakajima, M., Kato, T., Obara, T., Yagi, H., Kato, K., Usui, T., & Park, E.Y., Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat alpha 2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae. Bmc Biotechnology 9, 1- 13(2009).
    68 Chien, M.P., Jiang, S.B., & Chang, D.K., The function of coreceptor as a basis for the kinetic dissection of HIV type 1 envelope protein-mediated cell fusion. Faseb Journal 22 (4), 1179-1192 (2008).
    69 Vines, A., Wells, K., Matrosovich, M., Castrucci, M.R., Ito, T., & Kawaoka, Y., The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol 72 (9), 7626-7631 (1998).
    70 Ruhela, D., Chatterjee, P., & Vishwakarma, R.A., 1-Oxabicyclic beta-lactams as new inhibitors of elongating MPT--a key enzyme responsible for assembly of cell-surface phosphoglycans of Leishmania parasite. Org Biomol Chem 3 (6), 1043-1048 (2005).
    71 Kantchev, E.A., Chang, C.C., & Chang, D.K., Direct Fmoc/tert-Bu solid phase synthesis of octamannosyl polylysine dendrimer-peptide conjugates. Biopolymers 84 (2), 232-240 (2006).

    無法下載圖示 本全文未授權公開
    QR CODE