簡易檢索 / 詳目顯示

研究生: 高紹庭
Kao, Shao-Ting
論文名稱: α-硫辛酸延緩脂多醣誘導庫氏細胞NLRP3發炎小體活化及庫氏細胞培養液誘發小鼠FL83B肝臟細胞胰島素阻抗之研究
α-Lipoic Acid Alleviates NLRP3 Inflammasome Activation in LPS-induced Immortal Kupffer Cell and Kupffer Cell Conditioned Medium-induced Insulin Resistance in FL83B Mouse Hepatocytes.
指導教授: 沈賜川
Shen, Szu-Chuan
吳瑞碧
Wu, Swi-Bea
丁俞文
Ting, Yu-Wen
學位類別: 碩士
Master
系所名稱: 營養科學碩士學位學程
Graduate Program of Nutrition Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 硫辛酸第二型糖尿病庫氏細胞發炎小體胰島素阻抗
英文關鍵詞: alpha-lipoic acid, T2DM, insulin resistance, Kupffer cell, inflammation
DOI URL: http://doi.org/10.6345/NTNU202001588
論文種類: 學術論文
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第二型糖尿病的主要病因為胰島素阻抗,造成身體周邊組織無法讓血液中之葡萄糖順利進入細胞氧化產能。文獻指出,糖尿病的成因與身體的氧化壓力有高度相關性。硫辛酸(α-lipoic acid, ALA)具有抗氧化、協助身體產能代謝及協助體內抗氧化物質之還原再生等功能。本研究欲探討硫辛酸對於給予脂多糖(lipopolysaccharide, LPS)誘導不朽型小鼠庫氏細胞株(Immortal Kupffer cells)抗發炎及其改善庫氏細胞條件培養液誘發小鼠肝臟FL83B上皮細胞株胰島素阻抗之效果與可能機轉。庫氏細胞株先給予不同濃度(5, 100, 500, 2000μM)之ALA處理6小時後,再同時給予LPS 1μg/mL刺激6小時及nigericin 13.4μM 或ATP 1μM處理2小時增強發炎因子訊號,分析庫氏細胞發炎相關蛋白質表現量,並收集條件培養液進行後續實驗;其次,以庫氏細胞株條件培養液培養FL83B細胞株,並分析FL83B細胞胰島素阻抗相關蛋白質表現量。結果顯示,ALA濃度2400μM時庫氏細胞仍具有100%以上之存活率。而以LPS誘導庫氏細胞發炎之條件培養液其IL-1β產量與未誘導者相較提升了21.3倍,但是庫氏細胞株先給予ALA 2000μM處理再以LPS誘導後其IL-1β之產量降低了105倍。利用JC-1觀察ALA對LPS誘導庫氏細胞粒線體膜電位保護之效果,結果顯示ALA可以抑制LPS造成庫氏細胞粒線體膜電位失衡,並降低ROS對細胞之傷害。Western blot分析發現,ALA可以有效降低LPS誘導之庫氏細胞NF-κB、NLRP3蛋白之表現;另一方面,ALA可以明顯提升LPS處理庫氏細胞條件培養液培養FL83B細胞株胰島素傳訊蛋白p-PI3K、p-AKT及GLUT2之表現量。以上結果顯示,ALA可以減輕LPS誘導之庫氏細胞NLRP3發炎體活化,以及LPS誘導庫氏細胞條件培養液培養時FL83B細胞之胰島素阻抗。

    T2DM is characterized by insulin resistance that results in hyperglycemia. Previous studies indicated that the occurrence of T2DM is highly associated with high fat high carbohydrate diet, obesity and excess oxidative stress in human body. Alpha-lipoic acid (ALA) is a sulfur-containing strong anti-oxidant. The aim of this study is to investigate the effect of ALA on NLRP3 inflammasome activation in LPS-induced immortal Kupffer cells and the insulin resistance in Kupffer cells conditioned mediun incubated FL83B mouse hepatocytes. Kupffer cells were incubated with ALA (5, 100, 500, 2000μM) for 6 hrs, and then treated with LPS 1μg/mL 6 hrs and nigericin 13.4μM 1 hr or ATP 1μM 2 hr to activate the inflammasome. These Kupffer cells conditioned medium were collected for analysis for cytokines, and incubated with the FL83B mouse hepatocytes to induce insulin resistance in liver cells. The results showed that LPS increased IL-1β level by 21.3 folds, whereas 2000μM ALA decline IL-1β level by 105 folds in Kupffer cells conditioned medium. The MTT assay showed that no toxicology was abserved in a high concentration of 2400μM of ALA in Kupffer cells. ALA reduced the production of ROS from mitochondria damage in LPS-treated Kupffer cells. Results from Western blot analysis indicated that ALA decreased the NLRP3 inflammasome activation related protein expression such as NF-κB and NLRP3 in LPS-treated Kupffer cells. Moreover, ALA increased the insulin nsignaling related protein expression such as p-PI3K/p-AKT and GLUT2 in Kupffer cells conditioned medium-incubated FL83B liver cells. The above results suggest that ALA may possess potential on alleviating NLRP3 inflammasome activation in LPS-induced Kupffer cells and improving the insulin resistance in Kupffer cells conditioned medium incubated FL83B mouse hepatocytes.

    第一章 前言1 第二章 文獻回顧2 第1節 糖尿病2 第2節 胰島素阻抗6 第3節 氧化壓力與發炎9 第4節 庫氏細胞與發炎小體11 第5節 硫辛酸(alpha-lipoic acid,ALA)15 第三章 研究動機及實驗架構17 第1節 研究動機17 第2節 實驗架構18 第四章 實驗材料與方法19 第1節 實驗材料19 第2節 實驗步驟與方法23 第五章 實驗結果35 第1節 硫辛酸對庫氏細胞存活性之影響35 第2節 脂多醣LPS對庫氏細胞IL-1β產量之影響38 第3節 硫辛酸對LPS處理庫氏細胞培養液中細胞激素產量之影響40 第4節 硫辛酸對LPS處理庫氏細胞其粒線體膜電位變化之影響43 第5節 硫辛酸對LPS誘導庫氏細胞發炎其發炎小體相關蛋白質表現量影響46 第6節 硫辛酸改善庫氏細胞條件培養液中小鼠FL83B細胞葡萄糖攝入52 第7節 硫辛酸對庫氏細胞條件培養液處理FL83B細胞其胰島素訊號相關蛋白之影響54 第六章 討論59 第1節 硫辛酸對庫氏細胞存活性之影響59 第2節 脂多醣LPS對庫氏細胞IL-1β產量之影響60 第3節 硫辛酸對LPS處理庫氏細胞培養液中細胞激素產量之影響60 第4節 硫辛酸對LPS處理庫氏細胞其粒線體膜電位變化之影響61 第5節 硫辛酸對LPS誘導庫氏細胞發炎其發炎小體相關蛋白質表現量影響62 第6節 硫辛酸改善庫氏細胞條件培養液中小鼠FL83B細胞葡萄糖攝入64 第7節 硫辛酸對庫氏細胞條件培養液處理FL83B細胞其胰島素訊號相關蛋白之影響64 第七章 結論66 參考文獻68

    陳軍佑。(2017)。異硫氰酸苄酯與異硫氰酸苯乙酯異至庫氏細胞IL-1β釋出並改善肝細胞胰島素訊號。中國醫藥大學,台中市。
    張淯媛。(2018)。消渴草改變小鼠FL83B肝臟細胞株葡萄糖攝入活性成分之鑑定。 國立臺灣師範大學,台北市。
    楊灼華。(2019)。硫辛酸抑制第二型糖尿病大鼠肝臟NLRP3發炎體活化及非酒精性脂肪肝生成之研究。國立臺灣師範大學,台北市。
    黎孝韻、曾國慶。(2008)。自由基及抗氧化物功能的探討。藥學雜誌。
    衛生福利部國民健康署。(2018)。三高防治專區(高血壓、高血脂、糖尿病)。https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359
    衛生福利部國民健康署。(2016)。104年健康促進統計年報。 https://www.hpa.gov.tw/Pages/List.aspx?nodeid=268
    American Diabetes Association. (2017).Classification and diagnosis of diabetesmellitus. Diabetes Care. 40 (Supplement 1): S11‐24.
    American Diabetes Association. (2019). Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 42 (Supplement 1): S13-S28.
    Bahuguna, A., Khan, I., Bajpai, V.K., Kang. S.C. (2017). MTT assay to evaluate the cytotoxic potential of a drug. Banglaesh Journal of Pharmacology. 12(2): 115-118.
    Biddinger, S.B., Hernandez-Ono, A., Rask-Madsen, C., Haas, J.T., Alemán, J.O., Suzuki, R., Cohen, D.E. (2008). Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metabolism. 7(2): 125-134.
    Breitenbach, M., Eckl, P. (2015). Introduction to Oxidative Stress in Biomedical and Biological Research. Biomolecules. 5(2):1169–1177.
    Broz, P., Dixit, V.M. (2016). Inflammasomes: mechanism of assembly, regulation and signalling. Nature Review of Immunology. 16(7):407-420.
    Campbell, P.J., Mandarino, L.J., Gerich, J.E. (1988). Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Metabolism: Clinical and Experimental, 37(1): 15–21.
    Chen, Y.J., Hsieh, M.Y., Chang, M.Y., Chen, H.C., Jan, M.S., Maa, M.C., Leu, T.H. (2012). Eps8 protein facilitates phagocytosis by increasing TLR4-MyD88 protein interaction in lipopolysaccharide-stimulated macrophages. The Journal of Biological Chemistry. 287:18806–18819.
    Coll, R. C., Robertson, A. A., Chae, J. J., Higgins, S. C., Muñoz-Planillo, R., Inserra, M. C., Vetter, I., Dungan, L. S., Monks, B. G., Stutz, A., Croker, D. E., Butler, M. S., Haneklaus, M., Sutton, C. E., Núñez, G., Latz, E., Kastner, D. L., Mills, K. H., Masters, S. L., Schroder, K., O'Neill, L. A. (2015). A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine, 21(3), 248–255.
    Cooke, D.W., Plotnick, L. (2008). Type 1 diabetes mellitus in pediatrics. Pediatrics in Review. 29(11):374-385.
    Davinelli, S., Willcox, D.C., Scapagnini, G. (2012). Extending healthy ageing: nutrient sensitive pathway and centenarian population. Immun Ageing. 9 (9): 1-7.
    de Bont, N., Netea, M.G., Rovers, C., Smilde, T., Hijmans, A., Demacker, P.N., van der Meer, J.W., Stalenhoef, A.F. (2006). LPS-induced release of IL-1 beta, IL-1Ra, IL-6, and TNF-alpha in whole blood from patients with familial hypercholesterolemia: no effect of cholesterol-lowering treatment. Journal of Interferon & Cytokine Research : the official journal of the International Society for Interferon and Cytokine Research. 26(2). 101–107.
    Dixit, V.D. (2013). Nlrp3 inflammasome activation in type 2 diabetes: is it clinically relevant?. Diabetes. 62(1): 22–24.
    Elefantova, K., Lakatos, B., Kubickova, J., Sulova, Z., Breier, A. (2018). Detection of the Mitochondrial Membrane Potential by the Cationic Dye JC-1 in L1210 Cells with Massive Overexpression of the Plasma Membrane ABCB1 Drug Transporter. International Journal of Molecular Sciences. 19(7): 1985.
    Fernández-Mejía, C. (2013). Oxidative Stress in Diabetes Mellitus and the Role Of Vitamins with Antioxidant Actions. Oxidative Stress and Chronic Degenerative Diseases-a Role for Antioxidants. pp209.
    Gerald, R. (1988). Role of Insulin Resistance in Human Disease. Diabetes. 37(12):1595-1607.
    Golbidi, S., Badran, M., Laher, I. (2011). Diabetes and alpha lipoic Acid. Frontiers in Pharmacology. 2: 69.
    Gustafsson, A.B., Gottlieb, R.A. (2008). Heart mitochondria: gates of life and death. Cardiovascular Research. 77(2): 334–343.
    Haag, M., Dippenaar, N.G. (2005). Dietary fats, fatty acids and insulin resistance: short review of a multifaceted connection. Medical Science Monitor. 11(12): RA359-367.
    Haubrich W.S. (2004). Kupffer of Kupffer cells. Gastroenterology. 127(1): 16.
    Hink, U., Li, H., Mollnau, H., Oelze, M., Matheis, E., Hartmann, M., Skatchkov, M., Thaiss, F., Stahl, R.A., Warnholtz, A., Meinertz, T., Griendling, K., Harrison, D.G., Forstermann, U., Munzel, T. (2001). Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circulation Research. 88: E14-22.
    Houng, W., Yang, M., Lee, S., Horng, C., Ho, Y., Liu, R., Kuan, Y.H. (2018). MAPKs-NF-kappaB Pathway Plays a Crucial Role in the Antiinflammatory Effects of Amentoflavone in Lipopolysaccharide-treated BV2 Microglia. Indian Journal of Pharmaceutical Sciences. 80. 10.4172/pharmaceutical-sciences.1000346.
    International Diabetes Federation. 2017. IDF Diabetes Atlas 8th ed. Brussels, Belgium: International Diabetes Federation. http://www.diabetesatlas.org
    Jabir, M.S., Hopkins, L., Ritchie, N.D., Ullah, I., Bayes, H.K., Li, D., Tourlomousis, P., Lupton, A., Puleston, D., Simon, A.K., Bryant, C., Evans, T.J. (2015). Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy. 11(1): 166–182.
    Javadov, S., Kuznetsov, A. (2013). Mitochondrial permeability transition and cell death: the role of cyclophilin d. Frontiers in Physiology. 4: 76-81.
    Jo, E.K., Kim, J.K., Shin, D.M., Sasakawa, C. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology. 13(2):148–159.
    Kiemer, A.K., Müller, C., Vollmar, A.M. (2002). Inhibition of LPS‐induced nitric oxide and TNF‐α production by α‐lipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages. Immunology Cell Biology. 80(6):550-755.
    Kim, S.M., Ha, J.S., Han, A.R., Cho, S.W., Yang, S.J. (2019). Effects of α-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation. BMB Reports. 52(10):613-618.
    Kim, Y.K., Shin, J.S., Nahm, M.H. (2016). NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Medical Journal. 57(1): 5–14.
    Li, P., He, K., Li, J., Liu, Z., Gong, J. (2017). The role of Kupffer cells in hepatic diseases. Molecular Immunology. 85: 222–229.
    Mariathasan, S., Newton, K., Monack, D., Vucic, D., French, D., Lee, W., Roose-Girma, M., Erickson, S., Dixit, V. (2004). "Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf". Nature. 430 (6996):213–218.
    Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., Turner, R.C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 28(7):412-419.
    Mazibuko-Mbeje, S.E., Dludla, P.V., Roux, C., Johnson, R., Ghoor, S., Joubert, E., Louw, J., Opoku, A.R., Muller, C. (2019). Aspalathin-Enriched Green Rooibos Extract Reduces Hepatic Insulin Resistance by Modulating PI3K/AKT and AMPK Pathways. International Journal of Molecular Sciences. 20(3): 633.
    Moini, H., Packer, L., Saris, N.E. (2002). Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicology and Applied Pharmacology. 182(1): 84–90.
    Moini, H., Tirosh, O., Park, Y.C., Cho, K.J., Packer, L. (2002). R-alpha-lipoic acid action on cell redox status, the insulin receptor, and glucose uptake in 3T3-L1 adipocytes. Arch Biochem Biophys. 397(2):384-391.
    Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M., Núñez, G. (2013). K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38(6): 1142–1153.
    Nov, O., Kohl, A., Lewis, E. C., Bashan, N., Dvir, I., Ben-Shlomo, S., Fishman, S., Wueest, S., Konrad, D., Rudich, A. (2010). Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology. 151(9): 4247–4256.
    Papanas N, Ziegler D. (2014). Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opin Pharmacother. 15(18):2721-2731.
    Park, J., Min, J.S., Kim, B., Chae, U.B., Yun, J.W., Choi, M.S., Kong, I.K., Chang, K.T., Lee, D.S. (2015). Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neuroscience Letters. 584: 191–196.
    Rehman, K., Akash, M.S.H. (2016). Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? Journal Biomedical Science. 23: 87-105.
    Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A., Worzella, T.J., Minor, L. (2004). Cell Viability Assays. In G. S. Sittampalam (Eds.) Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences.
    Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y., Takahashi, H. (2003). Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 52: 581-587.
    Rochette, L., Ghibu, S., Muresan, A., Vergely, C. (2015). Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Canadian Journal of Physiology and Pharmacology. 93:1021–1027.
    Rochette, L., Ghibu, S., Richard, C., Zeller, M., Cottin, Y., Vergely, C. (2013). Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Molecular Nutrition & Food Research. 57(1):114-125.
    Rochette, L., Zeller, M., Cottin, Y., Vergely, C. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta. 1840(9): 2709–2729.
    Roden, M., Price, T.B., Perseghin, G., Petersen, K.F., Rothman, D.L., Cline, G.W., Shulman, G.I. (1996). Mechanism of free fatty acid-induced insulin resistance in humans. The Journal of Clinical Investigation. 97(12): 2859–2865.
    Rosen, O.M. (1987). After insulin binds. Science. 237(4821):1452-1458.
    Salehi, B., Berkay Yılmaz, Y., Antika, G., Boyunegmez Tumer, T., Fawzi Mahomoodally, M., Lobine, D., Akram, M., Riaz, M., Capanoglu, E., Sharopov, F., Martins, N., Cho, W.C., Sharifi-Rad, J. (2019). Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules. 9(8): 356-381.
    Schilling, D., Beissert, T., Fenton, M.J., Nixdorff, K. (2001). Negative regulation of IL-1beta production at the level of transcription in macrophages stimulated with LPS. Cytokine. 16(2):51-61.
    Shay, K.P., Moreau, R.F., Smith, E.J., Smith, A.R., Hagen, T.M. (2009). Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochimica et Biophysica Acta. 1790(10):1149–1160.
    Solmonson, A., DeBerardinis, R.J. (2018). Lipoic acid metabolism and mitochondrial redox regulation. J Biological Chemistry. 293(20): 7522–7530.
    Spisakova, M., Cizek, Z., Melkova, Z. (2009). Ethacrynic and alpha-lipoic acids inhibit vaccinia virus late gene expression. Antiviral Research. 81(2): 156–165.
    Stienstra, R., Joosten, L. A., Koenen, T., van Tits, B., van Diepen, J.A., van den Berg, S.A., Rensen, P.C., Voshol, P.J., Fantuzzi, G., Hijmans, A., Kersten, S., Müller, M., van den Berg, W.B., van Rooijen, N., Wabitsch, M., Kullberg, B.J., van der Meer, J.W., Kanneganti, T., Tack, C.J., Netea, M.G. (2010). The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism. 12(6): 593–605.
    Titchenell, P.M., Lazar, M.A., Birnbaum, M.J. (2017). Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinology Metabolism. 28(7): 497–505.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology. 39: 44-84.
    Vandanmagsar, B., Youm, Y.H., Ravussin, A., Galgani, J.E., Stadler, K., Mynatt, R.L., Ravussin, E., Stephens, J.M., Dixit, V.D. (2011). The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Medicine. 17(2): 179–188.
    Varman, T., Samuel, M.D., Kitt Falk Petersen, M.D., Gerald, I., Shulman, M.D. (2010). Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 375(9733): 2267-2277.
    Vida, C., González, E.M., De la Fuente, M. (2014). Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety. Current Pharmaceutical Design. 20(29):4656-4678.
    Wada, J., Makino, H. (2016). Innate immunity in diabetes and diabetic nephropathy. Nature Review Nephrology. 12(1):13-26.
    Wang, Z.Y., Burlak, C., Klaunig, J.E., Kamendulis, L.M. (2014). Development of a cytokine-producing immortalized murine Kupffer cell line. Cytokine. 70:165–172.
    Yang, Y., Wang, H., Kouadir, M., Song, H., Shi, F. (2019). Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death & Disease. 10: 128-139.
    Ying. Z., Kampfrath. T., Sun. Q., Parthasarathy. S., Rajagopalan. S. (2011). Evidence that alpha-lipoic acid inhibits NF-kappaB activation independent of its antioxidant function. Inflammation Research. 60(3): 219–225.
    Zeng, W. Q., Zhang, J. Q., Li, Y., Yang, K., Chen, Y.P., Liu, Z.J. (2013). A new method to isolate and culture rat kupffer cells. PloS One. 8(8)
    Zhang, Y., Lv, X., Hu, Z., Ye, X., Zheng, X., Ding, Y., Xie, P., & Liu, Q. (2017). Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death & Disease, 8(7), e2941.
    Zhang, X., Yu, W.P., Gao, L., Wei, K.B., Ju, J.L., Xu, J.Z. (2004). Effects of lipopolysaccharides stimulated Kupffer cells on activation of rat hepatic stellate cells. World Journal of Gastroenterology. 10(4): 610–613.

    無法下載圖示 電子全文延後公開
    2025/08/31
    QR CODE