簡易檢索 / 詳目顯示

研究生: 廖家慧
論文名稱: 使用者音樂描述及音樂資訊需求描述之分析研究
An Analysis of Users’ Description of Music and Music Information Needs
指導教授: 邱銘心
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 177
中文關鍵詞: 線上音樂音樂屬性架構音樂資訊檢索音樂描述未知音樂資訊需求音樂推薦音樂探索
英文關鍵詞: Online Music, Music Attributes Model, Music Information Retrieval (MIR), Music Description, Unknown Music Information Need, Music Recommendation, Music Discovery
論文種類: 學術論文
相關次數: 點閱:215下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 音樂能讓人表達情緒(Juslin & Laukka, 2004)、抒發心情。在網路越趨發達及線上音樂快速崛起的環境下,聆聽線上音樂成了現代人重要的休閒活動之一。然而線上音樂選擇眾多,如何幫助使用者找到符合期望的音樂,以滿足其音樂資訊需求即為重要的課題。傳統的音樂詮釋、分類方式(如:歌手、歌名、音樂類型等等)無法針對特定情境、情緒及使用目的,來滿足使用者的未知音樂資訊需求,也無法讓使用者享有音樂探索的樂趣。本研究認為線上音樂檢索系統除了提供傳統的音樂描述之外,還應包含以使用者為中心的各種音樂描述屬性。因此本研究旨在找出所有以使用者為中心的潛在音樂描述屬性,研究設計上從音樂感知和特定情境之下的未知音樂資訊需求等兩個面向來蒐集描述內容,再採以內容分析、實驗及訪談等方法,蒐集和分析使用者之音樂及音樂資訊需求描述內容。最後進行歸納和分類,建構完整的音樂描述屬性架構。
    為取得使用者之未知音樂資訊需求描述,本研究從KKBOX以及PTT之音樂討論區中,立意取樣500則包含未知音樂資訊需求之提問進行內容分析。研究結果顯示,線上音樂提問中的描述屬性主要包含48個屬性,可歸納為「音樂描述資訊」、「音樂相關資訊」、「舉例參考」、「使用者資訊」、「音樂相關情境」、「音樂認知」等六大類別。研究發現除了客觀描述之外,使用者利用大量的認知、感受、想法或是與音樂相關的情境等主觀詞彙來幫助描述未知音樂資訊需求。
    此外,本研究一共邀請了24位使用者進行音樂描述實驗,以蒐集使用者之音樂描述資料。實驗除了「音樂描述任務」,另外設計了「音樂檢索描述」、「音樂畫面描述」和「音樂情境描述」等三個任務,以找出多種描述情境之下的潛在描述屬性,並輔以訪談來了解使用者描述的內在意涵。最後以內容分析法整理上述資料內容。研究結果發現從四個任務中分別包含不同層面的音樂認知特性,全部音樂描述中一共包含74個屬性,可歸納為「音樂描述資訊」、「音樂相關資訊」、「舉例參考」、「使用者資訊」、「音樂相關情境」、「音樂認知」和「視覺元素」等七大類別,並發現視覺描述有助於音樂感知和描述。
    整體而言,使用者對於音樂需求或音樂本身的認知及描述方式相當廣泛且多元,除了包含大量的聯想之外,還與使用者本身具有高度的連結性;另外,音樂聆聽或使用情境對使用者的描述有重要的影響。
    根據上述研究結果,本研究提出以下建議:建議提供完整、多元的音樂描述方式,讓使用者能依照特定情境、情緒或使用目的來找尋音樂,例如事件、場合、情緒、抽象形容、作用等主觀描述屬性;對於音樂推薦服務,建議增加多重條件的音樂篩選模式,讓使用者能夠交叉查詢的方式滿足特殊的音樂需求;對於音樂探索,則建議針對「視覺畫面」和「聯想物」等跳脫音樂層次的描述概念,提供瀏覽或是圖像替代的描述方式,增加使用者和音樂偶遇的機會,以幫助使用者從中得到更佳的音樂探索經驗。

    Music can let people express their emotions (Juslin & Laukka, 2004) and also their feelings. Under the rapid rise of Internet and online music, listening to online music has become one of everyone's major leisure activities. How to help users find the music which meet their music information needs is an important issue. Most of the online music retrieval systems use the traditional musical bibliographic metadata (such as artist, song title, genre, etc.) to describe and classify music collection. However, such classification doesn't meet users' unknown music information needs. This study suggests that in addition to traditional music attributes, music retrieval system should also provide a variety of user-centered music attributes.
    This study collects 500 online music queries of unknown music information needs from the the KKBOX and PTT music forum. By doing content analysis, we found 48 attributes from the music queries which can be summarized as 6 categories. It shows that users use a lot of subjective descriptions with music cognition, feelings, ideas and contexts in addition to objective descriptions to help describe the unknown music information needs.
    In addition, this study invited a total of 24 users to join the music describing experiment to collect their music descriptions. The experiment includes four different tasks to explore all potential music attributes from a variety of contexts. All information gathered from tasks will be analyzed through Content analysis. The results show that there are a total of 74 attributes and can be summarized as 7 categories. We can see different phases of music characteristics. Furthermore, the results show that visual description can help music recognition and description.
    Overall, the users’ cognition and description of music and music information needs are extensive and diverse. The descriptions are full of association and high connection with users. Moreover, contexts of music listening and uses have great impact on users' music description.
    Based on the findings, this study offer the following recommendations: music retrieval systems should provide complete and diverse music attributes, allowing users to find the music in accordance with the specific context, mood or purpose of use; for better music recommendation service, it should provide multiple attributes choices, allowing users to cross search the music; for better music discovery service, it is recommended to provide attributes like "music images" and "association objects" to increase the opportunities of music encountering. At last, all recommendations are to help users have better music discovery experiences.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 5 第三節 研究範圍與限制 6 第四節 名詞解釋 8 第五節 預期貢獻 10 第二章 文獻探討 11 第一節 音樂推薦相關研究 11 第二節 音樂探索及瀏覽行為 16 第三節 音樂描述相關研究 19 第四節 音樂聆聽與音樂感知 29 第五節 現今線上音樂服務 34 第六節 總結 46 第三章 研究方法與設計 47 第一節 研究架構 47 第二節 研究流程 49 第三節 研究方法與研究對象 51 第四節 研究工具 58 第五節 資料分析 61 第六節 研究倫理 64 第七節 音樂描述實驗實施 65 第四章 研究結果 67 第一節 未知音樂資訊需求的描述屬性 67 第二節 使用者的未知音樂資訊需求描述特徵 87 第三節 使用者的音樂描述屬性 105 第四節 使用者的音樂描述特徵 125 第五節 未知音樂資訊需求描述與音樂描述比較分析 143 第五章 結論與建議 153 第一節 結論 153 第二節 建議 161 第三節 未來研究建議 164 參考文獻 166 附錄一 線上音樂使用者行為調查問卷 172 附錄二 音樂描述描述任務單 173 附錄三 音樂描述實驗訪談大綱 174 附錄四 音樂描述實驗指定曲目 175

    Bainbridge, D., Cunningham, S.J., & Downie J.S. (2003, October). How people describe their music information needs: a grounded theory analysis of music queries. Proceedings of the 4th International Conference on Music Information Retrieval. Baltimore, MD: Johns Hopkins University.
    Baltrunas , L., & Amatriain, X. (2009). Towards time-dependant recommendation based on implicit feedback. Proceedings of the 3rd ACM conference on Recommender systems. New York, NY: ACM.
    Baumann, S., & Hummel, O. (2005). Enhancing music recommendation algorithms using cultural metadata. Journal of New Music Research, 34(2), 161-172.
    Braijnik, G., Guida, G., & Tasso, C. (1990). User modeling in expert man-machine interfaces: a case study in intelligent information retrieval. IEEE Transactions Transactions on Systems, Man and Cybernetics, 20(1), 166-185.
    Broughton, G. (2002). Faceted classification as a basis for knowledge organization in a digital environment: the bliss bibliographic classification as a model for vocabulary management and the creation of multidimensional knowledge structures. The New Review of Hypermedia and Multimedia, 7(1), 67-102.
    Byrd, D., & Crawford, T. (2002). Problems of music information retrieval in the real world. Information Processing & Management, 38(2), 249-272.
    Cano, P., Koppenberger, M., & Wack, N. (2005). Content-based music audio recommendation. Proceedings of the 13th annual ACM international conference on Multimedia (pp. 211-212). New York, NY: ACM. doi: 10.1145/1101149.1101181
    Casey, M.A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music information retrieval: current directions and future challenges. Proceedings of the IEEE, 96(4), 668-696.
    Cohen, A.J. (2005). Music cognition: defining constraints on musical communication. In Miell, D., MacDonald, R., & Hargreaves, D.J.(Eds.), Musical communication (pp.61-84). New York, NY: Oxford University Press.
    Cunningham, S.J., Bainbridge, D., & McKay, D. (2007). Finding new music: a diary study of everyday encounter with novel songs. Proceedings of the 8th International Conference on Music Information Retrieval (pp. 83-88). Vienna, Austrian: Austrian Computer Society.
    Cunningham, S.J., Reeves, N., & Britland, M. (2003). An ethnographic study of music information seeking: Implications for the design of a music digital library. Proceedings of the 3rd Joint Conference on Digital Libraries(pp. 5-16). Los Alamitos, CA: IEEE Computer Society.
    Cytowic, R.E. (1989). Synesthesia: A Union of the Senses. New York, NY: Springer-Verlag.
    Della, C.M. (1977). Voci Suoni Rumori. (Tecniche per una scuola nuova, Vol. 11). Brescia, Italy: La scuola.
    Downie, J.S. (2003). Music information retrieval. Annual Review of Information Science and Technology, 37(1), 295-340.
    Downie, J.S., & Cunningham, S. J. (2002). Toward a theory of music information retrieval queries: system design implications. Proceedings of the 3rd International Conference on Music Information Retrieval (pp. 299-300) Paris, France: IRCAM-Centre Pompidou.
    Ghias, A. Logan, J., Chamberlin, D., & Smith, B.C. (1995). Query by humming: musical information retrieval in an audio database. Proceedings of the 3rd ACM International Conference on Multimedia(pp. 231-236). New York, NY: ACM. doi:10.1145/217279.215273
    Glaser, B.G. & Strauss, A.L. (1967). The Discovery of grounded theory: Strategies for qualitative research. New York, NY: Aldine Publishing Company.
    Goto, M., & Hirata, K. (2004). Recent studies on music information processing. Acoustical Science And Technology, 25(6), 419-425.
    Gouyon, F., & Dixon S. (2004). Dance music classification: a tempo-based approach. Proceedings of the 5rd International Conference on Music Information Retrieval Barcelona, Spain: Pompeu Fabra University.
    Hawley, M.J. (1993). Structure out of Sound (Doctoral dissertation, Massachusetts Institute of Technology). Retrieved from http://hdl.handle.net/1721.1/29068
    Jörgensen, C. (1998). Attributes of images in describing tasks. Information Processing & Management, 34(2-3), 161-174.
    Juslin, P. & Laukka, P. (2004). Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. Journal of New Music Research, 33(3), 217-238.
    Kim, J.Y. (2002). Categories of Music Description and Search Terms and Phrases Used by Non-Music Experts. Proceedings of the 3rd International Conference on Music Information Retrieval(pp. 209-214) Paris, France: IRCAM-Centre Pompidou.
    Kuo, F.F., Chiang, M.F., Shan, M.K., & Lee, S.Y. (2005). Emotion-based music recommendation by association discovery from film music. Proceedings of the 13th annual ACM international conference on Multimedia (pp. 507-510). New York, NY: ACM. doi: 10.1145/1101149.1101263
    Lamere, P. (2008). Social tagging and music information retrieval. Journal of New Music Research, 37(2), 101-114.
    Laplante, A. & Downie, J.S. (2006). Everyday Life Music Information-Seeking Behaviour of Young Adults. Proceedings of the 7rd International Conference on Music Information Retrieval (pp. 381-382) Victoria, Canada: University of Victoria.
    Lee, J.H. (2010). Analysis of user needs and information features in natural language queries seeking music information. Journal of the American Society for Information Science and Technology, 61, 1025-1045.
    Lee, J.H., & Downie, J.S. (2004). Survey of music information needs, uses and seeking behavior. Proceedings of the 5rd International Conference on Music Information Retrieval Barcelona, Spain: Pompeu Fabra University.
    Lehmann, A.C., Sloboda, J.A., & Woody, R.H. (2007). Psychology for musicians: understanding and acquiring the skills. New York, NY: Oxford University.
    Li, T. & Ogihara, M. (2005). Music Genre Classification with Taxonomy. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (pp.197-200). Piscataway, NJ: IEEE Signal Processing Society.
    Lipps, T. (1903). Empathy, einfühlung, innere nachahmung und organempfindung. Archiv Für Gesamte Psychologie, 1, 465-519.
    Osborne, H. (1984). The language metaphor in art. Journal of Aesthetic Education, 18(1), 9-20.
    Recording Industry Association of Japan. (2011). RIAJ Yearbook 2011. Retrieved from http://www.riaj.or.jp/e/issue/pdf/RIAJ2011E.pdf
    Ruud, E. (1998). Music therapy : improvisation, communication, and culture. Gilsum, NH: Barcelona Publishers.
    Sandvold, V., Aussenac, T., Celma, Ò., & Herrera, P. (2006). Good Vibrations: Music Discovery through Personal Musical Concepts. Proceedings of the 7th International Conference on Music Information Retrieval (pp. 322-323). Victoria, Canada: University of Victoria.
    Sloboda, J.A. (1985). The musical mind: the cognitive psychology of music. New York: Oxford University Press.
    Stefani, G., Tafuri, J., & Spaccazochi, M. (1979). Educazione Musicale di Base. Brescia, Italy: La Scuola.
    Typke, R., Wiering, F., & Veltkamp, R.C. (2005). A Survey of Music Information Retrieval Systems. Proceedings of the 6th International Conference on Music Information Retrieval (pp. 153-160). London, UK: University of London.
    Vernon, P.E. (1930). The phenomena of attenation and visualization in the psychology of musical appreciation. Journal of Psychology, 21, 50.
    Weigl, D.M., & Guastavinouser, C. (2011). User studies in the music information retrieval literature. Proceedings of 12th International Conference on Music Information Retrieval Conference (pp. 335-340). Miami, FL: University of Miami.
    卡爾西蕭(Seashore, C.E. )(1981)。音樂美學(郭長揚譯)。台北市:全音發行。(原作出版年:1977)
    瓦倫汀(Valentine, C.W.)(1991)。實驗審美心理學(潘智彪譯)。台北市:商鼎。(原作出版年:1962)
    林雯瑤(2006)。層面分類的概念與應用。教育資料與圖書館學。44(2),153-171。
    洪元元(2008)。從使用者音樂聆賞歷程探討線上音樂分類架構(未出版之碩士論文)。國立臺灣大學圖書資訊學研究所,台北市。
    郭美女(2000)。聲音與音樂教育。臺北市:五南。
    許馨文(2003)。音樂聆聽經驗的意義建構歷程:以十二位大學生聽、說歌曲〈菊花夜行軍〉為例(未出版之碩士論文)。國立政治大學廣播電視學系,台北市。
    陳映竹(2011)。大學生網路影音檢索之相關判斷研究(未出版之碩士論文)。國立臺灣師範大學圖書資訊學研究所,台北市。
    曾元顯(2000)。音樂內容查詢不匹配問題與檢索模式之研究。資訊傳播與圖書館學。6(4),35-48。
    漢斯利克(Hanslick, E.)(1997)。論音樂美:音樂美學的修改芻議(陳慧珊譯)。台北市:世界文物。(原作出版年:1990)
    劉思量(1992)。藝術心理學:藝術與創造。臺北市:藝術家出版。

    下載圖示
    QR CODE