研究生: |
魏永泰 Yung-Tai Wei |
---|---|
論文名稱: |
鉿基氧化物鐵電特性及負電容效應電晶體試製及分析 The Ferroelectric Characteristic of Hafnium Oxide-Based with Processing of Negative Capacitance Field-Effect Transistor |
指導教授: |
李敏鴻
Lee, Min-Hung |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | HfO2:Zr 、反鐵電 、低次臨界擺幅 、負電容 |
英文關鍵詞: | HfO2:Zr, AFE, steep subthreshold swing transistors, NC |
論文種類: | 學術論文 |
相關次數: | 點閱:348 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對未來 sub-10nm 發展,節能電晶體將是決勝關鍵,低次臨界擺幅電
晶體發展關係到 V dd 降低之節能發展,而負電容觀念為其中一種可能,於
2008 年由 UC Berkeley 的 S. Salahuddin 教授所揭露負電容觀念有助於 body
factor 小於 1,利用結晶的鐵電介電質得到負電容,以 PZT/STO 材料模擬增
強電容的作用也被提出,EPFL 進而使用 P(VDF-TrFE)材料於實驗上展現成
果,負電容閘極堆疊俱有內部電壓放大的效果。
本研究的目標就是發展利用鐵電負電容,達到低次臨界擺幅次世代電
晶體研究,目前發表的負電容論文所使用的鐵電材料多是用鋯鈦酸鉛(PZT)、
鉭酸鍶鉍(SBT)、鈦酸鍶(STO)…,這些材料由於與矽的熱力學上不相容,
且這些材料部分元素具有毒性汙染,並會造成 MOSFET 製程不相容,故於
此計劃將發展 oxide-based,如 HfO 2 , HfO 2 :Si, HfO 2 :Zr,也都有機會造成極
化效果,及反鐵電效果達到 MOSCAP 時有負電容效應,目標則是改善次臨
界擺幅(subthreshold swing),探討其中物理,故具實用性及新穎性。並予以
模擬手法,將理論觀點導入並尋求超陡峭電晶體的可能,故俱獨特性。
For the development of sub-10nm technology node, the devices with
energy conservation and carbon reduction is necessary. The steep subthreshold
swing FET may be the solution with lowing V dd , and negative capacitance
concept is a candidate for this requirement. Prof. S. Salahuddin, UC Berkeley,
has disclosed the concept of negative capacitance for body factor < 1 in 2008.
They reported the metastable of Gibbs free energy to obtain negative
capacitance effect, and simulated by PZT/STO. EPFL also experimented to
demonstrated the negative capacitance concept with P(VDF-TrFE) and reported
the voltage amplification.
In this project, we will develop the low swing FET by negative capacitance concept. We
will develop it on MOS-base line platform for sub-10nm technology node. We will make
effort in the development the ferroelectric oxide-based dielectric MOSFET. The reports
disclosed the FE material are PZT, SBT, STO…etc. with lots of issues such as, process
incompatible, toxic…etc. Therefore, the oxide-based with ferroelectric negative capacitance is
necessary, such as HfO 2 , HfO2:Si, HfO 2 :Zr. The NC with AFE is the approach and discuss the
physics for the practicability and novelty. We also including the simulation and modeling to
predict the high performance selector structure. It is uniqueness.
53
參考文獻
[1] S. Wolf, "Silicon Processing for the VLSI Era*, Vol-2,
p.338, Lattice Press, 1990.
[2] S. Wolf, "Silicon Processing for the VLSI Era*, Vol-2,
p.340, Lattice Press, 1990.
[3] International Technology Roadmap for Semiconductors (ITRS)
Roadmap, 2009.
[4] A. Chen, “Nanoelectronic Device Research for beyond-CMOS
Technologies” in “Emerging Technologies for the post 14nm Node
Area,” in IEEE IEDM short course, Dec. 8, 2012.
[5] H.-S. Philip Wang, “Introduction and Overview” in “VLSI
Technology Beyond 14 nm Node,” IEEE IEDM short course, Dec. 4,
2011.
[6] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger,
“Ferroelectricity in Hafnium Oxide:CMOS compatible Ferroelectric
Field Effect Transistors,’’ in IEDM., pp. 547-550, 2011.
[7] S.-Y. Wu, “A new ferroelectric memory device,
metal-ferroelectric-semiconductor transistor,’’ Trans. on Electron
Devices, vol 21, p. 499, 1974.
[8] M. H. Lee, J.-C. Lin, Y.-T. Wei, C.-W. Chen, H.-K. Zhuang, and M.
Tang, “Ferroelectric Negative Capacitance Hetero-Tunnel
Field-Effect-Transistors with Internal Voltage Amplification, ”
accepted in International Electron Devices Meeting (IEDM), 2013.
[9] S. Salahuddin, and S. Datta, ‘‘Can the subthreshold swing in a
classical FET be lowered below 60 mV/decade?,’’ in IEDM Tech.
54
Dig., pp. 693-696, 2008.
[10] S. Salahuddin and S. Datta, “Use of Negative Capacitance to
ProvideVoltage Amplification for Low PowerNanoscale Devices,’’
Nano Lett., Vol. 8, No. 2, pp. 405-410, 2008
[11] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric
Negative Capacitance MOSFET: Capacitance Tuning &
Antiferroelectric Operation,” in IEDM Tech. Dig., pp. 255-258,
2011.
[12] A. I. Khan, D. Bhowmik, P. Yu, S. J. Kim, X. Pan, R. Ramesh and S.
Salahuddin, “Experimental evidence of ferroelectric negative
capacitance in nanoscale heterostructures,’’ Appl. Phys. Lett., Vol. 99,
113501, 2011.
[13] C. W. Yeung, A. I. Khan, A. Sarker, S. Salahuddin, and C. Hu, “Low
Power Negative Capacitance FETs for Future Quantum-Well Body
Technology, ’’ in VLSI-TSA, pp. 179-180, 2013.
[14] G. A. Salvatore, D. Bouvet, and A. M. Ionescu, “Demonstration of
Subthrehold Swing Smaller Than 60mV/decade in Fe-FET with
P(VDF-TrFE)/SiO2 Gate Stack,” in IEDM Tech. Dig., pp. 167-170,
2008.
[15] A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescu,
‘‘Metal-Ferroelectric-Metal-Oxide-Semiconductor Field Effect
Transistor with Sub-60mV/decade Subthreshold Swing and Internal
Voltage Amplification,’’ in IEDM Tech. Dig., pp. 395-398, 2010.
[16] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U.
Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple
Binary ZrO2 and HfO 2 ,” Nano Lett., pp. 4318−4323, 2012
55
[17] J. Müller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Muller,
D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M.
Czernohorsky, K. Seidel, P. Kucher, R. Boschke, M. Trentzsch, K.
Gebauer, U. Schroder, and T. Mikolajick,” Ferroelectricity in HfO2
enables nonvolatile data storage in 28 nm HKMG, ” in VLSI Symp.
Tech. Dig., p. 25, 2012.
[18] M. H. Lee, S. T. Chang, T.-H. Wu, and W.-N. Tseng, “Driving
Current Enhancement of Strained Ge (110) p-type Tunnel FETs and
Anisotropic Effect,” IEEE Electron Device Letter, vol. 32, no. 10, pp.
1355-1357, 2011.
[19] K. Joen, W.-Y. Lop, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C.
Park, C. S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J.
King Liu, and C. Hu, “Si Tunnel Transistors with A Novel Silicided
Source and 46mV/dec Swing,” VLSI Symp. Tech. Dig., pp. 121-122,
2010.
[20] C. Hu, D. Chou, P. Patel, and A. Bowonder, “Green transistor—A
VDD scaling path for future low power ICs,” in Proc. Int. Symp.
VLSI-TSA, Apr. 2008, pp. 14–15.
[21] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel
Field-Effect-Transistors with Epitaxially Grown Germanium on
Silicon,” IEEE Trans. on Electron Device, vol. 60, no.7, pp.
2423-2427, 2013.
[22] S. J. Choi , J.W .Han, S. Kim, D. I1 Moon, M. Jang, and Y . K .
Choi, ”High - Performance Polycrystalline Silicon TFT on the
Structure of a Dopant-Segregated Schottky-Barrier Source/Drain,”
in IEEE EDL,Vol. 31. pp. 228-230, 2010.
56
[23] B. Jaffe, W-R. Cook and H. Jaffe, “Piezoelectric Ceramics,’’
Academic Press Inc., London. 1970.
[24] P. Paruch, T. Giamarchi, T. Tybell, and J.-M. Triscone “Nanoscale
studies of domain wall motion in epitaxial ferroelectric thin films,’’
American Physical Society, APS March Meeting, March, pp. 21-25,
(2005).
[25] M . T. Escote, F. M. Pontes, E. R. Leite, E. Longo, R. F. Jardim ,
“ High oxygen-pressure annealing effectson the ferroelectric and
structural properties of PbZr 0.3 Ti 0.7 O 3 thin films,” JAP, Vol. 96, pp.
2186-2191, 2004.
[26] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang,
“Evolution of phases and ferroelectric properties of thin Hf 0.5 Zr 0.5 O 2
films according to the thickness and annealing temperature,” APL,
102, 242905, 2013.
[27] C. H. Cheng and A. Chin, “Low- Voltage Steep Turn-On pMOSFET
Using Ferroelectric High-k Gate Dielectric ,” IEEE EDL, Vol. 35, pp.
274-276, 2014.
[28] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U.
Schroeder, and T. Mikolajick, “Incipient Ferroelectricity in
Al-Doped HfO2 Thin Films,” Adv. Funct. Mater., 22, 2412, 2012.
[29] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger et al.,
“Ferroelectricity in yttrium-doped hafnium oxide,” JAP, 110,
114113, 2011.
[30] T. Mitsui, An Introduction to the Physics of Ferroelectrics, Gordon
and Breach Science Publishers: London, 1976.