研究生: |
邱瑀辰 |
---|---|
論文名稱: |
石墨烯與金奈米粒子疊層結構材料應用於基質輔助雷射脫附游離質譜儀之分析 Layer by layer Matrix Based on Reduced Graphene Oxide - Au Nanoparticles |
指導教授: | 陳家俊 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 基質輔助游離脫附質譜儀 、石墨烯 、金奈米 |
英文關鍵詞: | MALDI-TOF-MS, Graphene, Au NPs |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究是發展出一種新穎疊層結構材料應用在表面基質輔助雷射脫附質譜儀之分析,一方面藉由近年來廣泛受到注目石墨烯材料,利用其多苯環以及片狀材料所導致的良好傳熱及導電性,搭配常見傳統的偵測小分子基質-金奈米粒子利用旋度塗覆的方式,形成多層的疊層結構,藉由兩者都為良好的基質特性,進一步達到增加分析物游離的效果以及增強分析物的分析訊號並提高其靈敏度,由於材料疊層結構的穩定性使得分析物在測量過程中有良好再現性。
儀器條件方面是採正離子模式,折返式偵測器下進行偵測,樣品濃度皆為10-4M,點樣的方法皆取1.5μL點樣,在材料鑑定方面我們可從SEM看出材料剖面疊層結構厚度大約是200nm,另外再從紫外光吸收儀也可以看出同時具有金奈米粒子與石墨烯的吸收波長。
在比較2、5、10、15、25不同層數材料基質的質譜圖中,在訊號強度及背景訊號干擾的考量下, 以10層的結構較適合最為進一步條件的探討,析物方面,我們選擇了不同種類的分析物如醣類分子、多種胺基酸以及胜肽進行偵測,結果而本研究所開發的疊層材料能夠有效偵測溶於不同分析物,且此新穎疊層結構改善與金有特殊之鍵結之化合物之分析訊號。
Reduced graphene oxide (rGO) sheets (two dimensional atomic layers of sp2-bonded carbon) exhibit unique thermal and electric conductivity. Here, a novel layer-by-layer (LBL) structure on the basis of sequential spin coating of rGO sheet and gold nanoparticles has been developed as a matrix for matrix-assisted laser desorption mass spectrometry (MALDI-MS) analysis. The optical and structural properties of the LBL structure were examined using UV-vis spectroscopy and scanning electron microscope (SEM). The SEM image showed that the thickness of LBL structure was about ~200 nm. Meanwhile, the absorption spectra of LBL structure showed the absorption peak of rGO (~270 nm) and gold nanoparticles (~530 nm), respectively. The LBL matrix was demonstrated for the improvement of the ionization efficiency of analytes (carbohydrates, amino acids and peptides) and enhancement of the signal-to-noise ratio in MALDI-MS analysis. Mass spectroscopy was performed in the positive mode of a reflectron-type mass spectrometer, respectively. The concentration of all samples is 10-4 M for the MALDI-MS analysis. In the MALDI-MS analysis, the 10 layers of LBL structure showed the best efficiency for desorption and ionization of analytes.
1. Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Phys. Rev. Lett. 2009, 103, (24), 246804.
2. Chen, B.; Meinertzhagen, I. A.; Shaw, S. R. J Comp Physiol A 1999, 185, (5), 393-404.
3. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, (8), 4806-4814.
4. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, (5932), 1312-4.
5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, (5696), 666-9.
6. Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R. Nano Lett. 2008, 8, (12), 4593-4596.
7. Alric, C.; Taleb, J.; Duc, G. L.; Mandon, C.; Billotey, C.; Meur-Herland, A. L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tillement, O. JACS 2008, 130, (18), 5908-5915.
8. Im, J.; Chandekar, A.; Whitten, J. E. Langmuir 2009, 25, (8), 4288-92.
9. Yigit, M. V.; Zhu, L.; Ifediba, M. A.; Zhang, Y.; Carr, K.; Moore, A.; Medarova, Z. ACS Nano 2010, 5, (2), 1056-1066.
10. Kuo, T. R.; Chen, J. S.; Chiu, Y. C.; Tsai, C. Y.; Hu, C. C.; Chen, C. C. Anal Chim Acta 2011, 699, (1), 81-6.
11. Karas, M.; Bachmann, D.; Hillenkamp, F. Anal. Chem. 1985, 57, (14), 2935-2939.
12. Lund, B. C.; Abrams, T. E.; Gravely, A. A. J Rehabil Res Dev 2011, 48, (5), vii-ix.
13. Wen, X.; Dagan, S.; Wysocki, V. H. Anal. Chem. 2006, 79, (2), 434-444.
14. Liu, C. W.; Chien, M. W.; Chen, G. F.; Chen, S. Y.; Yu, C. S.; Liao, M. Y.; Lai, C. C. Anal Chem 2011, 83, (17), 6593-600.
15. Liu, Y.; Liu, J.; Yin, P.; Gao, M.; Deng, C.; Zhang, X. J Mass Spectrom 2011, 46, (8), 804-15.
16. Chen, S.-Y.; Li, K.-I.; Yu, C.-S.; Wang, J.-S.; Hu, Y.-C.; Lai, C.-C. Anal. Chem. 2010, 82, (14), 5951-5957.
17. Teng, C.-H.; Ho, K.-C.; Lin, Y.-S.; Chen, Y.-C. Anal. Chem. 2004, 76, (15), 4337-4342.
18. Nayak, R.; Knapp, D. R. Anal. Chem. 2010, 82, (18), 7772-7778.
19. Wu, H.-P.; Su, C.-L.; Chang, H.-C.; Tseng, W.-L. Anal. Chem. 2007, 79, (16), 6215-6221.
20. Seino, T.; Sato, H.; Yamamoto, A.; Nemoto, A.; Torimura, M.; Tao, H. Anal. Chem. 2007, 79, (13), 4827-4832.
21. Tang, H.-W.; Ng, K.-M.; Chui, S. S.-Y.; Che, C.-M.; Lam, C.-W.; Yuen, K.-Y.; Siu, T.-S.; Lan, L. C.-L.; Che, X. Anal. Chem. 2009, 81, (9), 3676-3682.
22. Lee, J.; Kim, Y.-K.; Min, D.-H. JACS 2010, 132, (42), 14714-14717.
23. Yang, H.-J.; Lee, A.-R.; Lee, M.-K.; Kim, W.; Kim, J.-K. Bull. Korean Chem. Soc. 2010, 31, (1), 35-40.
24. Zhou, X.; Wei, Y.; He, Q.; Boey, F.; Zhang, Q.; Zhang, H. Chem. Commun. 2010, 46, (37), 6974-6976.
25. Dong, X.; Cheng, J.; Li, J.; Wang, Y. Anal. Chem. 2010, 82, (14), 6208-6214.
26. Lu, M.; Lai, Y.; Chen, G.; Cai, Z. Anal. Chem. 2011, 83, (8), 3161-3169.
27. Liu, R.; Liu, J.-f.; Zhou, X.-x.; Jiang, G.-b. Anal. Chem. 2011, 83, (10), 3668-3674.
28. Zhang, J.; Dong, X.; Cheng, J.; Li, J.; Wang, Y. J Am Soc Mass Spectrom 2011, 22, (7), 1294-8.
29. Marvin, L. F.; Roberts, M. A.; Fay, L. B. Clin. Chim. Acta 2003, 337, (1-2), 11-21.
30. Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A. J Mass Spectrom 2001, 36, (8), 849-65.
31. Sloley, S.; Smith, S.; Gandhi, S.; Caldwell Busby, J. A.; London, S.; Luksch, H.; Clayton, D. F.; Bhattacharya, S. K. Journal of Proteome Research 2007, 6, (6), 2341-2350.
32. Huang, Y.-F.; Chang, H.-T. Anal. Chem. 2006, 78, (5), 1485-1493.