研究生: |
蔡昀達 Tsai, Yun-Da |
---|---|
論文名稱: |
聯吡啶釕錯合物在陰離子感測器與光催化溴離子氧化之應用 The Applications of Ruthenium Polypyridyl Complexes to Anion Sensor and Photocatalytic Oxidation of Bromide |
指導教授: |
張一知
Chang, I-Jy |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 150 |
中文關鍵詞: | 陰離子感測器 、溴離子氧化 、光催化 、釕金屬錯合物 |
英文關鍵詞: | anion sensor, oxidation of bromide, photocatalysis, ruthenium complexes |
DOI URL: | https://doi.org/10.6345/NTNU202202224 |
論文種類: | 學術論文 |
相關次數: | 點閱:136 下載:27 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究聯吡啶釕金屬錯合物的光物理性質及其應用,應用之一為氟離子感測器,另一則是利用 flash-quench technique 來了解三價釕金屬錯合物與溴離子及碘離子之間的電子傳遞速率,以便更進一步探討光敏性染料太陽能電池的反應機制。
氟離子感測器實驗所選擇之錯合物是含有羥基的 [Ru(bpy)2((OH)2bpy)](PF6)2,其電子吸收光譜、冷光光譜、生命期、量子產率以及電化學氧化還原性質均已被測量,且發現錯合物對於氟離子具有獨特之選擇性。利用 Job's plot 及滴定實驗可以得知錯合物與氟離子之間的反應比例,在相同濃度 (10-4 M) 但使用不同溶劑的條件下,Ru:F ─ 之比例為 1:3 (乙腈) 及 1:2 (DMSO),顯示溶劑效應對於此偵測反應有相當之影響性。而在相同溶劑 (乙腈) 但不同濃度的條件下,Ru:F ─ 之比例為 1:3 (10-4 M) 及 1:4 (10-3 M),同樣的現象在 DMSO 作為溶劑的情況下也有被觀察到,Ru:F ─ 之比例為 1:2 (10-4 M) 及 1:4 (10-2 M),也證實了濃度效應在此反應中深具影響力。利用冷光光譜的偵測,可使錯合物對於氟離子之偵測極限提升至 10-6 M。
錯合物 [Ru(bpy)3](PF6)2 (1)、[Ru(bpy)2(deeb)](PF6)2 (2)、[Ru(deeb)2(dmbpy)](PF6)2 (3)、[Ru(deeb)2(bpy)](PF6)2 (4)、[Ru(deeb)3](PF6)2 (5) 及 [Ru(deeb)2(bpz)](PF6)2 (6) 則是利用於研究電子傳遞實驗,所有錯合物的光物理及氧化還原性質均已測量。錯合物 1-6 照光激發後與氧化淬熄劑 (ArN2+ 或 MV2+) 先進行雙分子淬熄反應,所得到之淬熄速率常數 kq 介於 1.02 x 107 及 1.13 x 109 M-1 s-1之間,相對應其淬熄反應之驅動力介於 0.26 到 0.76 eV 間是相當符合 driving force dependence,另外所測得 sphere-of-action 之有效半徑分別為 3.2 (ArN2+) 以及 2.0 nm (MV2+) 也與驅動力有正相關性。而淬熄後得到的三價釕金屬錯合物再與溴離子或碘離子進行電子傳遞之反應,與溴離子反應之電子傳遞速率常數 kBr 依序由 1.17 x 108 M-1 s-1 (0.43 eV) 增加至 1.11 x 1010 M-1 s-1 (0.73 eV),也是符合 driving force dependence,但三價釕金屬錯合與碘離子反應之電子傳遞速率常數 kI 卻差異不大,約介於 1.1-3.0 x 1010 M-1 s-1 之間。
We have studied the photophysical properties and applications of ruthenium(II) trisbipyridyl complexes. The first part is about fluoride sensor. The other one we want to investigate the electron transfer rate constants of ruthenium(III) with bromide and iodide utilize the flash-quench technique for the mechanism of DSSC.
The complex with hydroxyl groups, [Ru(bpy)2((OH)2bpy)](PF6)2, is employed for fluoride sensor. Photophysical properties are carried out and indicating that this complex is unique to fluoride ion. Job's plot and titration experiments shows the ratios of Ru:F ─ are 1:3 in MeCN and 1:2 in DMSO while the concentrations are about 10-4 M. It suggests solvent effect in this reaction. In different concentration, the ratios of Ru:F ─ are 1:3 (10-4 M) and 1:4 (10-3 M) in MeCN. The same phenomenon is observed in DMSO, the ratios of Ru:F ─ are 1:2 (10-4 M) and 1:4 (10-2 M). The concentration effect is also present here. The detection limit is about 10-6 M to fluoride ion.
Six ruthenium complexes, [Ru(bpy)3](PF6)2 (1), [Ru(bpy)2(deeb)](PF6)2 (2), [Ru(deeb)2(dmbpy)](PF6)2 (3), [Ru(deeb)2(bpy)](PF6)2 (4), [Ru(deeb)3](PF6)2 (5) and [Ru(deeb)2(bpz)](PF6)2 (6) have been employed to investigate the electron transfer. The oxidation potential for complexes 1-6 are 1.26, 1.36, 1.42, 1.46, 1.56 and 1.66 V vs SCE, respectively. Bimolecular quenching rate constants (kq) of complex 1-6 by quenchers, ArN2+ and MV2+, are between 1.02 x 107 and 1.13 x 109 M-1 s-1. The radii of sphere-of-action are 3.2 (ArN2+) and 2.0 nm (MV2+). Electron transfer rate constants (kBr) of ruthenium(III) with bromide are from 1.17 x 108 M-1 s-1(0.43 eV) to 1.11 x 1010 M-1 s-1(0.73 eV). The results are dependent on driving force. Electron transfer rate constants (kI) of ruthenium(III) with iodide are about 1.1-3.0 x 1010 M-1 s-1. The similar rate constants are because of diffusion limit in MeCN.
1. Balzani, V.; Barigelletti, F.; De Cola, L. Metal Complexes as Light Absorption and Light Emission Sensitizers. Top. Curr. Chem. 1990, 158, 31-71.
2. Wu, Y.; Peng, X.; Fan, J.; Gao, S.; Tian, M.; Zhao, J.; Sun, S. Fluorescence Sensing of Anions Based on Inhibition of Excited-State Intramolecular Proton Transfer. J. Org. Chem. 2007, 72, 62-70.
3. Hay, B. P.; Firman, T. K.; Moyer, B. A. Structural Design Criteria for Anion Hosts: Strategies for Achieving Anion Shape Recognition through the Complementary Placement of Urea Donor Groups. J. Am. Chem. Soc. 2005, 127, 1810-1819.
4. Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C. A New Fluoride Selective Fluorescent as Well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative. J. Am. Chem. Soc. 2003, 125, 12376-12377.
5. Descalzo, A. B.; Rurack, K.; Weisshoff, H.; Martinez-Máñez, R.; Dolores Marcos, M.; Amorós, P.; Hoffmann, K.; Soto, J. Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. J. Am. Chem. Soc. 2005, 127, 184-200.
6. Otón, F.; Tárraga, A.; Espinosa, A.; Velasco, M. D.; Molina, P. Ferrocene-Based Ureas as Multisignaling Receptors for Anions. J. Org. Chem. 2006, 71, 4590-4598.
7. Amendola, V.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M.; Monzani, E.; Sancenón, F. Metal-Enhanced H-Bond Donor Tendencies of Urea and Thiourea toward Anions: Ditopic Receptors for Silver(I) Salts. Inorg. Chem. 2005, 44, 8690-8698.
8. Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.; Tierney, J.; Ali, H. D. P.; Hussey, G. M. Colorimetric “Naked Eye” Sensing of Anions in Aqueous Solution. J. Org. Chem. 2005, 70, 10875-10878.
9. Amilan Jose, D.; Krishna Kumar, D.; Ganguly, B.; Das, A. Efficient and Simple Colorimetric Fluoride Ion Sensor Based on Receptors Having Urea and Thiourea Binding Sites. Org. Lett. 2004, 6, 3445-3448.
10. Thiagarajan, V.; Ramamurthy, P.; Thirumalai, D.; Ramakrishnan, V. T. A Novel Colorimetric and Fluorescent Chemosensor for Anions Involving PET and ICT Pathways. Org. Lett. 2005, 7, 657-660.
11. Pfeffer, F. M., Gunnlaugsson, T., Jensen, P. Kruger, P. E. Anion Recognition Using Preorganized Thiourea Functionalized [3]Polynorbornane Receptors. Org. Lett. 2005, 7, 5357-5360.
12. Li, Y.; Cao, L.; Tian, H. Fluoride Ion-Triggered Dual Fluorescence Switch Based on Naphthalimides Winged Zinc Porphyrin. J. Org. Chem. 2006, 71, 8279-8282.
13. Kim, H. J.; Kim, S. K.; Lee, J. Y.; Kim, J. S. Fluoride-Sensing Calix-Luminophores Based on Regioselective Binding. J. Org. Chem. 2006, 71, 6611-6614.
14. Kim, S. K.; Bok, J. H.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S. A Fluoride-Selective PCT Chemosensor Based on Formation of a Static Pyrene Excimer. Org. Lett. 2005, 7, 4839-4842.
15. Lin, C.-I.; Selvi, S.; Fang, J.-M.; Chou, P.-T.; Lai, C.-H.; Cheng, Y.-M. Pyreno[2,1-b]pyrrole and Bis(pyreno[2,1-b]pyrrole) as Selective Chemosensors of Fluoride Ion: A Mechanistic Study. J. Org. Chem. 2007, 72, 3537-3542.
16. de Namor, A. F. D.; Shehab, M.; Abbas, I.; Withams, M. V.; Zvietcovich-Guerra, J. New Insights on Anion Recognition by Isomers of a Calix Pyrrole Derivative. J. Phys. Chem. B 2006, 110, 12653-12659.
17. Nishiyabu, R.; Palacios, M. A.; Dehaen, W.; Anzenbacher, P., Jr.; Synthesis, Structure, Anion Binding, and Sensing by Calix[4]pyrrole Isomers. J. Am. Chem. Soc. 2006, 128, 11496-11504.
18. Curiel, D.; Cowley, A.; Beer, P. D. Indolocarbazoles: a New Family of Anion Sensors. Chem. Commun. (Camb). 2005, 2, 236-238. doi:10.1039/b412363h
19. Chang, K.-J.; Moon, D.; Lah, M. S.; Jeong, K.-S. Indole-Based Macrocycles as a Class of Receptors for Anions. Angew. Chem. Int. Ed. Engl. 2005, 44, 7926-7929.
20. Yoon, J.; Kim, S. K.; Jiten Singh, N.; Kim, K. S. Imidazolium Receptors for the Recognition of Anions. Chem. Soc. Rev. 2006, 35, 355-360.
21. Chellappan, K.; Jiten Singh, N.; Hwang, I.-C.; Lee, J. W.; Kim, K. S. A Calix[4]imidazolium[2]pyridine as an Anion Receptor. Angew. Chem. Int. Ed. Engl. 2005, 44, 2899-2903.
22. Hudnall, T. W.; Gabbaï, F. P. Ammonium Boranes for the Selective Complexation of Cyanide or Fluoride Ions in Water. J. Am. Chem. Soc. 2007, 129, 11978-11986.
23. Liu, Z.-Q.; Shi, M.; Li, F.-Y.; Fang, Q.; Chen, Z.-H.; Yi, T.; Huang, C.-H. Highly Selective Two-Photon Chemosensors for Fluoride Derived from Organic Boranes. Org. Lett. 2005, 7, 5481-5484.
24. Yamaguchi, S.; Akiyama, S.; Tamao, K. Colorimetric Fluoride Ion Sensing by Boron-Containing p-Electron Systems. J. Am. Chem. Soc. 2001, 123, 11372-11375.
25. Guliyev, R.; Ozturk, S.; Sahin, E.; Akkaya, E. U. Expanded Bodipy Dyes: Anion Sensing Using a Bodipy Analog with an Additional Difluoroboron Bridge. Org. Lett. 2012, 14, 1528-1531.
26. Melaimi, M.; Gabbaï, F. P. A Heteronuclear Bidentate Lewis Acid as a Phosphorescent Fluoride Sensor. J. Am. Chem. Soc. 2005, 127, 9680-9681.
27. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Dye Sensitised Zinc Oxide: Aqueous Electrolyte: Platinum Photocell. Nature 1976, 261, 402-403.
28. O'Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737-740.
29. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, Md. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 percent efficiency. Science 2011, 334, 629-634.
30. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.
31. Amilan Jose, D.; Kar, P.; Koley, D.; Ganguly, B.; Thiel, W.; Ghosh, H. N.; Das, A. Phenol- and Catechol-Based Ruthenium(II) Polypyridyl Complexes as Colorimetric Sensors for Fluoride Ions. Inorg. Chem. 2007, 46, 5576-5584.
32. Lin, Z.-H.; Zhao, Y.-G.; Duan, C.-Y.; Zhang, B.-G.; Bai, Z.-P. A Highly Selective Chromo- and Fluorogenic Dual Responding Fluoride Sensor: Naked-Eye Detection of F- Ion in Natural Water via a Test Paper. Dalton Trans. 2006, 3678-3684. doi:10.1039/b601282e
33. Bhosale, S. V.; Bhosale, S. V.; Kalyankar, M. B.; Langford, S. J. A Core-Substituted Naphthalene Diimide Fluoride Sensor. Org. Lett. 2009, 11, 5418-5421.
34. Klein, S.; Dougherty, W. G.; Kassel, W. S.; Dudley, T. J.; Paul, J. J. Structural, Electronic, and Acid/Base Properties of [Ru(bpy)2(bpy(OH)2)]2+ (bpy = 2,2'-Bipyridine, bpy(OH)2 = 4,4'-Dihydroxy-2,2'-bipyridine). Inorg. Chem. 2011, 50, 2754-2763.
35. Nicoleti, C. R.; Marini, V. G.; Zimmermann, L. M.; Machado, V. G. Anionic Chromogenic Chemosensors Highly Selective for Fluoride or Cyanide Based on 4-(4-Nitrobenzylideneamine)phenol. J. Braz. Chem. Soc. 2012, 5-10.
36. Pandey, S.; Ali, M.; Bishnoi, A.; Azam, A.; Pandey, S.; Chawla, H. M. Quenching of Pyrene Fluorescence by Calix[4]arene and Calix[4]resorcinarenes. J. Fluoresc. 2008, 18, 533-539.
37. Bertolotti, S. G.; Montejano, H. A.; Previtali, C. M. Comparison of the Kinetics of Electron Transfer in the Diffusion Limit for the Singlet and Triplet Quenching of Eosin Y by Quinones. Photochem. Photobiol. 2013, 89, 1442-1447.
38. Li, G.; Ward, W. M.; Meyer, G. J. Visible Light Driven Nanosecond Bromide Oxidation by a Ru Complex with Subsequent Br-Br Bond Formation. J. Am. Chem. Soc. 2015, 137, 8321-8323.