研究生: |
高鈺萍 Kao, Yu-Pin |
---|---|
論文名稱: |
探討對於智慧手機NFC近端感應支付創新應用之持續採用意願 The Factors Affecting Continuance Intention of NFC Proximity Mobile Payments on SmartPhone |
指導教授: |
洪榮昭
Hong, Jon-Chao |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 139 |
中文關鍵詞: | NFC 、Apple Pay 、行動支付 、滿意度 、持續意圖 |
英文關鍵詞: | NFC, Apple Pay, Mobile Payment, Satisfaction, Continuous Intention |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DIE.013.2018.E01 |
論文種類: | 學術論文 |
相關次數: | 點閱:253 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數位化是未來發展趨勢,金融業者紛紛跟進搶占行動支付的市場份額。目前市面上行動支付工具種類繁多,其中以『智慧手機NFC感應支付』最具國際開創性,它涵蓋三種品牌,如Apple Pay、Samsung Pay、Android Pay (Google Pay),讓智慧手機成為行動載具,取代傳統信用卡來刷卡付款,最具有實現跨國境無現金行動消費的潛力。
Apple Pay行動支付服務於2017年3月在台灣推出,僅僅3天,就創下超過40萬人次的註冊綁卡率,但後續交易額卻呈疲軟,被媒體以『雷聲大雨點小』來形容其低迷的使用率(再購率)。因此,本研究主要以『資訊期望確認理論』(ECM-IS)作為基礎構面,再加上『個人創新意識』(PI)、『危險信念』(DB)、『主觀規範』(SN),進行數據分析與驗證,來探討使用者對於NFC感應支付的持續使用意圖。
採用驗證性因素分析研究方法,對蒐集到的368份有效問卷,來進行結構方程建模驗證。經實證分析結果顯示,本研究模型具有足夠的擬合度,為合理適配。「有用認知」是最能直接影響「持續意圖」的關鍵因子。而最能中介影響「持續意圖」的因子,以「主觀規範」為甚,而「個人創新意識」次之。而「危險信念」對於「主觀規範」有負向相關。最終,本研究依據實證數據,提出討論及實務上管理意涵,以提供行動支付業者、政府金管單位、銀行業者,以及相關學者研究參考。
Financial digitalization is a future trend and the financial market has set off a wave of mobile payments. There are lots of mobile payment providers that have followed up to capture market shares. Among them, the “NFC Proximity Mobile Payment” is the most groundbreaking innovation. It consists of three brands, such as Apple Pay, Android Pay (Google Pay), and Samsung Pay. NFC-enabled on smartphone could replace traditional credit card payments, and could have the potential of Cashless-Society without any restrictions among countries.
The Apple Pay was launched in Taiwan in March 2017 and within 3 days over 400,000 users were registered. However, the transaction volume was weak and was described by the media as “Loud thunder but tiny rain.” which means low repeated usage. Therefore, this study is based on “ECM-IS” theory, plus “Personal Innovativeness” (PI), “Danger Belief” (DB), and “Subjective Norms” (SN), through data analysis and verification, to explore the user's continuous intention of NFC Mobile payment.
Data of 368 were useful return and subjected to confirmatory factor analysis with structural equation modeling. The results of empirical analysis showed that this model has a reasonable fit. “Perceived Usefulness” was the key factor that could directly affect “Continue Intention”. The factors that can most indirectly influence the “Continue Intention” were “Subjective Norms” and “Personal Innovativeness” was the second important factor. The Danger Belief in mobile banking were negatively related to “Subjective Norms”. Finally, based on the empirical data, this study proposed discussion and practical management implications to provide mobile payment providers, government, financial banking industry, and scholars as references.
一、中文文獻
David.H(2017)。Apple Pay、Samsung Pay與Android Pay進場,不過他們究竟怎麼運作?,科技新報TechNews,2017年6月25日。 取自 http://technews.tw/2017/06/15/payment-issue/
Linli(2017)。Apple Pay 進入中國市場一週年,高開低走毫無存在感,科技新報TechNews,2017年2月20日。 取自 https://technews.tw/2017/02/20/one-year-on-apple-pay-faces-uphill-climb/
MoneyDJ(2017)。Apple Pay欲通過優惠打開中國市場,但相比微信、支付寶還差的遠呢,MONEYDJ新聞摘錄,2017年7月19日。 取自 http://blog.moneydj.com/news/2017/07/19/apple-pay欲通過優惠打開中國市場,但相比微信、支付寶/
中央社報導(2017)。信用卡消費跌 9 個月低,Apple Pay 待觀察,科技新報TechNews,2017年6月7日。 取自 https://technews.tw/2017/06/07/credit-card-shopping-down-taiwan-april/
台灣中央銀行(2016)。臺灣電子支付之發展,立法院第 9 屆第 3 會期財政委員會第5次全體委員會議,2016年5月3日。 取自 http://www.cbc.gov.tw/public/Attachment/75313384371.pdf
吳明隆(2009)。結構方程模式-AMOS的操作與應用(第二版)。台北市:五南。
林玉妹(2010)。跨國企業導入產品生命週期管理營運績效評估之研究。國立勤益科技大學研發科技與資訊管理研究所,台中市。
股感知識庫(2015)。技術採用生命週期,股感知識庫,2015年11月2日。取自https://www.stockfeel.com.tw/技術採用生命週期/
洪浩雲(2011)。公部門資訊系統導入使用者抗拒之研究。淡江大學資訊管理學系碩士班,新北市。
胡自立(2018)。台灣行動支付消費者調查-整體消費者分析,財團法人資訊工業策進會-產業情報研究所(MIC)產業觀測,2018年1月31日。取自 https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=486
郑莹、黄悦与张玉(2017)。艾瑞:2017Q1第三方移动支付交易规模突破20万亿,艾瑞网,2017年7月3日。 取自 http://report.iresearch.cn/content/2017/07/269002.shtml
翁士吉與田育任(2014)。「行動商務」支付應用發展趨勢,財金資訊季刊 No.78,2014年4月。取自 https://www.fisc.com.tw/Upload/8ad3205d-d59f-452a-b66a-162edb28e2a3/TC/7803.pdf
翁舒婷(2015)。圖解行動支付兩大模式,你的錢未來這樣用!,數位時代,2015年10月10日。 取自 https://www.bnext.com.tw/article/37609/BN-2015-10-09-090544-34
高宜凡(2015)。萬事具備!丹麥2016年進入「無現金社會」,遠見文化雜誌網,2015年9月30日。 取自 https://www.gvm.com.tw/article.html?id=20975
許鈞禹(2012)。以理性行為理論探討消費者團購網購買意願之影響。東吳大學企業管理學系,台北市。
陳寬裕與王正華(2010)。論文統計分析實務:SPSS與AMOS的運用。台北:五南出版社。
曾春瑜(2013)。以延伸式科技接受模型探討行動支付帳單之使用意願。東吳大學資訊管理學系,台北市。
楊玉奇(2016)。行動支付當道,驅動經濟新革命,台北產經,2016年9月26日。取自 https://www.taipeiecon.taipei/article_cont.aspx?MmmID=1201&MSid=711302242025024236
楊雅婷(2009)。以理性行為理論和科技接受模型來探討消費者對創新科技智慧型手機的購買意願行為之研究。南華大學企業管理系管理科學碩博士班,嘉義縣。
葉賀勤(2012)。以科技接受模型探討消費者之網路銀行使用意圖。國立成功大學企業管理學系碩博士班,台南市。
廖珮君(2017)。Apple Pay陷3窘境 綁卡數趨緩,蘋果日報,2017年8月27日。 取自 http://www.appledaily.com.tw/appledaily/article/finance/20170827/37761803/
潘維忠(2017)。台灣行動支付的現況與展望,教育部105年校務行政e化交流服務計畫。 取自 http://www.isac.org.tw/spaw2/uploads/files/20170120/1.%201060120%20台灣行動支付的現況及展望1(教育部「105年校務行政e化交流服務計畫).pdf
潘競恒、王千文與陳敦源(2011)。電子治理與Web2.0社群網站使用行為之實驗研究,2011年5月。國立政治大學公共行政系2011台灣公共行政與公共事務系所聯合會年會暨國際學術研討會(TASPAA) 會議論文 。取自 http://140.119.115.26/handle/140.119/61351
蔡佳進(2011)。以期望確認理論觀點探討實用性與娛樂性價值對社交網站滿意度及持續使用意圖之影響。國立中山大學資訊管理學系研究所,高雄市。
盧冠誠(2017)。迎戰Apple Pay 央行:拓展台灣Pay為主要方向,自由時報,2017年5月12日。 取自 http://news.ltn.com.tw/news/business/breakingnews/2054727
蕭文康(2016)。Facebook:84%台灣人手機不離身,蘋果日報,2016年10月27日。 取自 http://www.appledaily.com.tw/realtimenews/article/new/20161027/976740/
蕭文龍(2009)。 多變量分析最佳入門實用書:SPSS+LISREL。頁 16-75。 台北市: 碁峰資訊
鍾敏玲(2017)。專家傳真-進擊的行動支付!,工商時報,2017 年9月6日。 取自 http://www.chinatimes.com/newspapers/20170906000142-260202
鍾興祺(2015)。以科技接受模式探討使用者採用 NFC行動支付之意圖。國立高雄應用科技大學企業管理系,高雄市。
二、英文文獻
Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 665-694.
Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215. doi: 10.1287/isre.9.2.204
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Kuhl J., & Beckmann, J. (Eds.), Action control: From cognition to behavior (pp. 11-39). Berlin, Heidelberg: Springer.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. United States: Prentice-Hall.
Al-Mamary, Y. H., Al-nashmi, M., Hassan, Y. A. G., & Shamsuddin, A. (2016). A critical review of models and theories in field of individual acceptance of technology. International Journal of Hybrid Information Technology, 9(6), 143-158. doi: 10.14257/ijhit.2016.9.6.13
Alnaser, F. M. I., Ghani, M. A., & Rahi, S. (2017). The impact of SERVQUAL model and subjective norms on customer’s satisfaction and customer loyalty in islamic banks: A cultural context. International Journal of Economics & Management Sciences, 6(455), 2. doi: 10.4172/2162-6359.1000455
Amoroso, D. L., & Magnier-Watanabe, R. (2012). Building a research model for mobile wallet consumer adoption: The case of mobile Suica in Japan. Journal of theoretical and applied electronic commerce research, 7(1), 13-14. doi: 10.4067/s0718-18762012000100008
Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12(2), 125-143.
Asatryan, D. (2017). Apple pay users to double in 2017, Bank Innovation, April 13, 2017. Retrieved from https://bankinnovation.net/2017/04/apple-pay-users-to-double-in-2017/
Au, Y. A., & Kauffman, R. J. (2008). The economics of mobile payments: Understanding stakeholder issues for an emerging financial technology application. Electronic Commerce Research and Applications, 7(2), 141-164. doi: 10.1016/j.elerap.2006.12.004
Baron, R. A., Byrne, D. E., & Byrne, D. (1997). Social psychology. United States: Allyn and Bacon.
Bauer, R. A. (1960). Consumer behavior as risk taking. Paper presented at the Proceedings of the 43rd National Conference of the American Marketing Assocation, June 15, 16, 17, Chicago, Illinois, 1960.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. doi: 10.1007/BF02723327
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588.
Bhattacherjee, A. (2001a). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214. doi: 10.1016/s0167-9236(01)00111-7
Bhattacherjee, A. (2001b). Understanding information systems continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351-370. doi: 10.2307/3250921
Bollen, K. A. (1989): Structural equations with latent variables. New York: John Wiley & Sons. doi: 10.1002/9781118619179
Bollen, K. A., & Long, J. S. (1993). Testing structural equation models. California: SAGE Publications.
Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Publications.
Chang, M. K., Cheung, W., & Lai, V. S. (2005). Literature derived reference models for the adoption of online shopping. Information & Management, 42(4), 543-559. doi: 10.1016/s0378-7206(04)00051-5
Chen, X. (2015). On the users’ intention to adopt mobile banking: The role of subject norm. Science Journal of Business and Management, 3(6), 235. doi: 10.11648/j.sjbm.20150306.14
Clarke, R. (2008). A risk assessment framework for mobile payments. Bled Slovenia: 21st Bled eCommerce Conference.
Cox, D. F., & Rich, S. U. (1964). Perceived risk and consumer decision-making: The case of telephone shopping. Journal of Marketing Research, 1(4), 32. doi: 10.2307/3150375
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Cunningham, S. M. (1967). The major dimension of perceived risk, in Donald F. Cox(ED). Risk taking and information handling in consumer behavior (pp. 82-108). Boston: Harvard University Press.
Das, P. (2015). Apple Pay turns '1' -The myth of fintech disruption, Finextra. Retrieved from https://www.finextra.com/blogposting/11657/apple-pay-turns-1--the-myth-of-fintech-disruption
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319. doi: 10.2307/249008
Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of B2C channel satisfaction and preference: Validating e-commerce metrics. Information Systems Research, 13(3), 316-333. doi: 10.1287/isre.13.3.316.77
Ezell, S. J. (2009). Explaining international IT application leadership: contactless mobile payments. The Information Technology &Innovation Foundation(ITIF). from http://www.itif.org/files/2009-Mobile-Payments.pdf
Fang, W. T., Ng, E., Wang, C. M., & Hsu, M. L. (2017). Normative beliefs, attitudes, and social norms: People reduce waste as an index of social relationships when spending leisure time. Sustainability, 9(10), 1696. doi: 10.3390/su9101696
Featherman, M., & Pavlou, P. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. doi: 10.1016/S1071-5819(03)00111-3
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: an introduction to theory and research. Reading, Mass.: Addison-Wesley Pub. Co.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi: 10.2307/3151312
Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in Internet shopping. Journal of Business Research, 56(11), 867-875. doi: 10.1016/s0148-2963(01)00273-9
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90.
Giovannini, C. J., Ferreira, J. B., Silva, J. F. d., & Ferreira, D. B. (2015). The effects of trust transference, mobile attributes and enjoyment on mobile trust. BAR - Brazilian Administration Review, 12(1), 88-108. doi: 10.1590/1807-7692bar2015140052
Granovetter, M. (1985). Economic action and social structure: The problem of embeddedness. American Journal of Sociology, 91(3), 481-510.
Hair, J. F. (2010). Multivariate data analysis (7 ed.). New Jersey: Prentice Hall.
Hair, J.F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2011). An assessment of the use of partial least squares structural equation modeling in marketing research. AJournal of the academy of marketing science, 40(3), 414-433. doi: 10.1007/s11747-011-0261-6
Ham, M., Jeger, M., & Frajman Ivković, A. (2015). The role of subjective norms in forming the intention to purchase green food. Economic Research-Ekonomska Istraživanja, 28(1), 738-748. doi: 10.1080/1331677x.2015.1083875
Hayduk, L. A. (1987). Structural equation modeling with LISREL: Essentials and advances. United States: Johns Hopkins University Press.
Hong, J. C., Hwang, M. Y., Hsu, C. H., Tai, K. H., & Kuo, Y. C. (2015). Belief in dangerous virtual communities as a predictor of continuance intention mediated by general and online social anxiety: The Facebook perspective. Computers in Human Behavior, 48, 663-670. doi: 10.1016/j.chb.2015.02.019
Hong, S., Thong, J. Y. L., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819-1834. doi: 10.1016/j.dss.2006.03.009
Hossain, M. A., & Quaddus, M. (2012). Expectation–Confirmation Theory in information system research: A review and analysis. Integrated Series in Information Systems, 28, 441-469. doi: 10.1007/978-1-4419-6108-2_21
Howcroft, B., Hamilton, R., & Hewer, P. (2002). Consumer attitude and the usage and adoption of home‐based banking in the United Kingdom. International Journal of Bank Marketing, 20(3), 111-121. doi: 10.1108/02652320210424205
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. doi: 10.1080/1070551990954118
Hwang, Y., Al-Arabiat, M., & Shin, D. H. (2016). Understanding technology acceptance in a mandatory environment. Information Development, 32(4), 1266-1283. doi: 10.1177/0266666915593621
Im, I., Kim, Y., & Han, H.-J. (2008). The effects of perceived risk and technology type on users’ acceptance of technologies. Information & Management, 45(1), 1-9. doi: 10.1016/j.im.2007.03.005
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-291. doi: 10.2307/1914185
Kao, H. L., Holz, C., Roseway, A., Calvo, A., & Schmandt, C. (2016). DuoSkin. MIT Media Lab, 16-23. doi: 10.1145/2971763.2971777
Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. California: SAGE Publications.
Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across Time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23(2), 183. doi: 10.2307/249751
Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. The American Economic Review, 75(3), 424-440.
Kenny, D. A. (1979). Correlation and causality. New York: Wiley.
Khatimah, H., & Halim, F. (2016). The effect of attitude and its decomposed, perceived behavioral control and its decomposed and awareness on intention to use e-money mobile in Indonesia. Journal of Scientific Research and Development, 3, 39-50.
Kim, B. (2010). An empirical investigation of mobile data service continuance: Incorporating the theory of planned behavior into the expectation–confirmation model. Expert Systems with Applications, 37(10), 7033-7039. doi: 10.1016/j.eswa.2010.03.015
Kim, D., Ferrin, D., & Rao, R. (2003). An investigation of consumer online trust and purchase-repurchase intentions. ICIS 2003 Proceedings, 30.
Kim, Y., Yun, S., & Lee, J. (2014). Can companies induce sustainable consumption? The impact of knowledge and social embeddedness on airline sustainability programs in the U.S. Sustainability, 6(6), 3338-3356. doi: 10.3390/su6063338
King, B. (2012). Bank 3.0: Why banking is no longer somewhere you go, but something you do. Hoboken, New Jersey: John Wiley & Sons Inc.
Kotler, P. (1997). Marketing management: Analysis, planning, implementation, and control. United States: Prentice Hall.
Lawkobkit, M., & Speece, M. (2012). Integrating focal determinants of service fairness into post-acceptance model of IS continuance in cloud computing. Computer and Information Science, 49-55. doi: 10.1109/icis.2012.63
Lee, C., & Green, R. T. (1991). Cross-cultural examination of the Fishbein behavioral intentions model. Journal of International Business Studies, 22(2), 289-305. doi: 10.1057/palgrave.jibs.8490304
Lewis, W., Agarwal, R., & Sambamurthy, V. (2003). Sources of influence on beliefs about information technology use: An empirical study of knowledge workers. MIS Quarterly, 27(4), 657-678.
Li, H., & Liu, Y. (2014). Understanding post-adoption behaviors of e-service users in the context of online travel services. Information & Management, 51(8), 1043-1052. doi: 10.1016/j.im.2014.07.004
Li, W., Wu, X., & Wang, A. (2017). To stick or to switch: Understanding social reading apps continuance by evidence collected from chinese college students. Journal of Computer Information Systems, 5, 223-237. doi: 10.1007/978-981-10-6710-5_13
Liao, C., Chen, J.-L., & Yen, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804-2822. doi: https://doi.org/10.1016/j.chb.2006.05.006
Limayem, M., Hirt, S. G., & Cheung, C. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS Quarterly, 31(4), 705. doi: 10.2307/25148817
Liu, Y. (2015). Consumer protection in mobile payments in China: A critical analysis of Alipay's service agreement. Computer Law & Security Review, 31(5), 679-688. doi: 10.1016/j.clsr.2015.05.009
Liu, Z., Min, Q., & Ji, S. (2009). An empirical study on mobile banking adoption: The role of trust. Electronic Commerce and Security, 7-13. doi: 10.1109/isecs.2009.150
Lu, H. P., Hsu, C. L., & Hsu, H. Y. (2005). An empirical study of the effect of perceived risk upon intention to use online applications. Information Management & Computer Security, 13(2), 106-120. doi: 10.1108/09685220510589299
Luarn, P., & Lin, H.-H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21(6), 873-891. doi: 10.1016/j.chb.2004.03.003
Lyytinen, K., & Hirschheim, R. (1987). Information systems failures: A survey and classification of the empirical literature Oxford Surveys in Information Technology (Vol. 4, pp. 257-309). New York: Oxford University Press, Inc.
Mallat, N. (2007). Exploring consumer adoption of mobile payments – A qualitative study. The Journal of Strategic Information Systems, 16(4), 413-432. doi: 10.1016/j.jsis.2007.08.001
Mazman, G., Usluel, Y., & Özeke, V. (2009). Social influence in the adoption process and usage of innovation: Gender differences. International Journal of Behavioral, Cognitive, Educational and Psychological Sciences, 1(4), 229-232.
Meskaran, F., Ismail, Z., & Shanmugam, B. (2013). Online purchase intention: Effects of trust and security perception. Australian Journal of Basic and Applied sciences, 7(6), 307-315.
Minihold, R. (2011). Near field communication (NFC) technology and measurements. Munich, Germany: Rohde & Schwarz Application Development.
Mitchell, V. W. (1999). Consumer perceived risk: Conceptualisations and models. European Journal of Marketing, 33(1-2), 163-195.
Moore, G. A. (1991). Crossing the chasm: Marketing and selling technology products to mainstream customers. United States: HarperBusiness.
Moroni, A., Talamo, M., & Dimitri, A. (2015). Adoption factors of NFC mobile proximity payments in Italy. Paper presented at 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, 393-399. doi: 10.1145/2785830.2785874
Noar, S. M. (2003). The role of structural equation modeling in scale development. Structural Equation Modeling: A Multidisciplinary Journal, 10(4), 622-647. doi: 10.1207/S15328007SEM1004_8
Nunnally, J. C. (1978). Psychometric theory (2 ed.). New York: McGraw-Hill.
Okereke, D. (2017). Factors driving mobile payment adoption: Benefits, challenges & opportunities. Research Project of University of South Wales. doi: 10.13140/RG.2.2.24752.25603
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469. doi: 10.2307/3150499
Pal, D., Vanijja, V., & Papasratorn, B. (2015). An empirical analysis towards the adoption of NFC mobile payment system by the end user. Procedia Computer Science, 69, 13-25. doi: 10.1016/j.procs.2015.10.002
Parkinson, J., Russell-Bennett, R., & Previte, J. (2012). Mum or bub? Which influences breastfeeding loyalty. Australasian Marketing Journal (AMJ), 20(1), 16-23. doi: 10.1016/j.ausmj.2011.10.010
Peters, S. (2015). Apple Pay fraud gives us a new reason to hate data breaches and SSNs, DARKReading. Retrieved from https://www.darkreading.com/apple-pay-fraud-gives-us-a-new-reason-to-hate-data-breaches-and-ssns/d/d-id/1319339?piddl_msgorder=thrd
Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: An extension of the technology acceptance model. Internet Research, 14(3), 224-235. doi: 10.1108/10662240410542652
Pousttchi, K. (2003). Conditions for acceptance and usage of mobile payment procedure. The Second International Conference on Mobile Business, Vienna, Austria, 2003, 30-45.
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891.
Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75. doi: 10.1016/j.omega.2005.12.002
Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information Systems Research, 13(1), 50-69. doi: 10.1287/isre.13.1.50.96
Rakhi, T., & Mala, S. (2014). Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Research, 24(3), 369-392. doi: doi:10.1108/IntR-12-2012-0244
Riaz, S. (2015). Apple Pay sees high sign-up rate but low repeat usage, says study, Mobile World Live, April 2, 2015. Retrieved from https://www.mobileworldlive.com/apple-pay-sees-high-sign-rate-low-repeat-usage-says-study
Ripley, W. (2016). How to get by in Beijing without a wallet, CNN tech News, April 8, 2016. Retrieved from http://money.cnn.com/2016/04/08/technology/beijing-mobile-payments-no-wallet/index.html
Riquelme, H. E., Karjaluoto, H., & Rios, R. E. (2010). The moderating effect of gender in the adoption of mobile banking. International Journal of Bank Marketing, 28(5), 328-341. doi: 10.1108/02652321011064872
Rogers, E. M. (1962). Diffusion of innovations. New York: Free Press of Glencoe.
Rogers, E. M. (2003). Diffusion of innovations (5 ed.). New York: Free Press.
Sam, K. M., Chatwin, C. R., & Zhang, J. X. (2014). Adoption of near field communication for mobile payment: Evidence from Macau. Industrial Engineering and Engineering Management, 1121-1125. doi: 10.1109/ieem.2014.7058813
San-Martín, S., Prodanova, J., & Jiménez, N. (2015). The impact of age in the generation of satisfaction and WOM in mobile shopping. Journal of Retailing and Consumer Services, 23, 1-8. doi: 10.1016/j.jretconser.2014.11.001
Scott, J. E. (1995). The measurement of information systems effectiveness: Evaluating a measuring instrument. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 26(1), 43-61.
Schillewaert, N., Ahearne, M. J., Frambach, R. T., & Moenaert, R. K. (2005). The adoption of information technology in the sales force. Industrial Marketing Management, 34(4), 323-336. doi: 10.1016/j.indmarman.2004.09.013
Seol, S., Lee, H., & Zo, H. (2016). Exploring factors affecting the adoption of mobile office in business: an integration of TPB with perceived value. International Journal of Mobile Communications, 14(1), 1. doi: 10.1504/ijmc.2016.073341
Settlements, B. f. I. (2012). Innovations in retail payments-report of the working group on innovations in retail payments.
Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129-142. doi: 10.1016/j.tele.2014.05.003
Shin, D. H. (2009). Towards an understanding of the consumer acceptance of mobile wallet. Computers in Human Behavior, 25(6), 1343-1354. doi: 10.1016/j.chb.2009.06.001
Slade, E., Williams, M., Dwivedi, Y., & Piercy, N. (2014). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223. doi: 10.1080/0965254x.2014.914075
Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A reexamination of the determinants of consumer satisfaction. Journal of Marketing, 60(3), 15. doi: 10.2307/1251839
Stone, R. N., & Winter, F. (1985). Risk in buyer behavior contexts: A clarification. BEBR Faculty Working Paper; no. 1216.
Sutin, M., & Weed, G. (2014). Apple Pay performacne: The first four months. from https://phoenixmi.com/learn/apple-pay-performance-the-first-four-months/
Van Raaij, E. M., & Schepers, J. J. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838-852.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. doi: 10.1287/mnsc.46.2.186.11926
Wejnert, B. (2002). Integrating models of diffusion of innovations: A conceptual framework. Annual Review of Sociology, 28(1), 297-326. doi: 10.1146/annurev.soc.28.110601.141051
WorldBank. (2010). Social norms and communication influence. Communication for Governance and Accountability Program (CommGAP). from http://documents.worldbank.org/curated/en/447441468178139680/Social-norms-and-communication-influence
Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142. doi: 10.1016/j.chb.2011.08.019
Zeng, Q., & Ma, J. (2016). Understanding the role of individual perception on mobile payment: Moderating or mediating. Journal of Advanced Management Science, 195-200. doi: 10.12720/joams.4.3.195-200
Zhang, L., Tan, W., Xu, Y., & Tan, G. (2011). Dimensions of perceived risk and their influence on consumers’ purchasing behavior in the overall process of B2C. Engineering Education and Management: Vol 1, Results of the 2011 International Conference on Engineering Education and Management (ICEEM2011), 1-10. doi: 10.1007/978-3-642-24823-8_1
Zhang, Y., Wan, G., Huang, L., & Yao, Q. (2015). Study on the impact of perceived network externalities on consumers' new product purchase intention. Journal of Service Science and Management, 8, 99-106. doi: 10.4236/jssm.2015.81012
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767. doi: 10.1016/j.chb.2010.01.013