研究生: |
曾偉哲 Tseng, Wei-Zhe |
---|---|
論文名稱: |
白背櫟複合群葉表角質蠟層的遺傳架構與天擇訊號 Genetic architecture and the selection signals of the epicuticular waxes layer in Q. salicina complex |
指導教授: |
廖培鈞
Liao, Pei-Chun |
口試委員: |
廖培鈞
Liao, Pei-Chun 黃仁磐 Huang, Jen-Pan 李承叡 Lee, Cheng- Ruei |
口試日期: | 2024/07/03 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 白背櫟複合群 、ABC運輸蛋白 、平衡選擇 、淨化選擇減弱 、蠟質層祖徵重建 |
英文關鍵詞: | Quercus salicina complex, ABC transporter, balancing selection, relaxation from purifying selection, ancestral character state reconstruction |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401442 |
論文種類: | 學術論文 |
相關次數: | 點閱:116 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物無法透過播遷等方式改變棲息的位置,因此演化出一系列特徵以利於其適應環境中的極端逆境,葉背角質蠟層便是植物抵抗環境逆境最重要的特徵之一。過去二十年間葉背角質蠟層的功能與生合成機制受到植物學家的廣泛關注,相比之下葉背角質蠟層遺傳架構的探討則較為缺乏,研究多集中於模式物種與作物,非模式物種則鮮有相關研究。本研究以殼斗科物種為研究對象,探討非模式物種葉背角質蠟層的遺傳架構與天擇訊號。我首先利用全基因組重定序 (whole genome re-sequencing) 獲得臺灣中北部30個白背櫟複合群 (Q. salicina species complex) 個體的基因組序列,並以全基因組關聯性分析、族群分化指數與功能性註釋,定位及辨別葉背角質蠟層變異的候選基因座位置及功能,接著使用族群分化指數與序列分化程度關聯性、基因座的核苷酸多態性與基因樹總分支長等指標辨別候選基因座的族群尺度天擇訊號。為了進一步揭示不同物種間候選基因座的天擇訊號,我利用實驗室未發表的68個殼斗科物種的轉錄組序列,重建葉背角質蠟層的演化歷史並分析序列的同義/非同義突變比例。研究結果顯示第五號染色體上具有兩個相鄰的候選區域,並且首個候選區域中存在六個與葉背角質蠟層變異高度相關的ABCC3候選基因座。關聯區域內族群分化指數與序列分化程度的高度正相關,以及候選基因座顯著上升的核甘酸多態性與總分支長則支持候選區域存在族群尺度的平衡選汰訊號。葉背角質蠟層的祖徵重建顯示蠟質層最早出現於石櫟屬 (Lithocarpus)、石柯屬(Notholithocarpus) 與櫟屬 (Quercus) 的共祖中,相當於古新世晚期至始新世早期階段。同義/非同義突變比例顯示六個ABCC3候選基因座受到淨化選擇,然而ABCC3-4基因表現出淨化選擇減弱的訊號。以上結果支持野生殼斗科植物透過運輸蛋白影響葉背角質蠟層的表型,而結合組徵重建結果與物種尺度的天擇訊號,ABCC3基因可能在古新世晚期至始新世早期獲得運輸蠟質產物的新功能,以應對此時期快速上升的昆蟲植食壓力。族群尺度的平衡選擇訊號則顯示頻率依賴選擇可能決定了族群中葉背角質蠟層的頻率,進一步導致了候選基因座表現出平衡選擇訊號。
Plants are not able to relocate their growth sites, thus heavily rely on a series of traits to withstand environmental extremes. The abaxial epicuticular wax layer is considered one of the most important traits for plant adaptation, playing significant roles in drought and temperature tolerance, as well as resistance against pathogens and herbivores. While extensive research has focused on the biofunctions and biosynthesis pathways of the wax layer over the past two decades, investigations into the genetic architecture underlying wax layer variation, especially in non-model organisms, remain relatively limited. In this study, I obtained whole-genome resequencing data from 30 individuals of the Quercus salicina species complex from central-northern Taiwan, exploring the genetic architecture of wax variation in this species complex and detecting selection signals at candidate loci. I further accessed transcriptome sequences from 68 Fagaceae species, reconstructing the evolution of the epicuticular wax layer trait and detecting species-level selection signals in orthologs of candidate genes. The results discovered two candidate regions on chromosome 5, and identified six ABCC3 genes encoding ABC-type transporter proteins as the candidate loci underlying epicuticular wax variation. Additionally, a positive correlation between FST and Dxy, along with distinct elevated nucleotide diversity and total branch lengths of ABCC3 genes, suggests balancing selection signals at the population level for these candidate loci. Ancestral state reconstruction indicates the earliest occurrence of the epicuticular wax layer in the common ancestor of Lithocarpus, Notholithocarpus, and Quercus, which can be dated back to the late Paleocene to early Eocene origin. CODEML analyses further reveal a low but higher ω ratio in the foreground branches of ABCC3 orthologs, supporting a relaxation from purifying selection for this gene. These results demonstrate that the transporter proteins modulates epicuticular wax variation in wild oaks. The evolution of the wax layer in the late Paleocene to early Eocene matched the period with increased insect herbivory. Together with the relaxation from purifying selection suggests that ABCC3 gained wax transportation functionality in response to positive selection from sharply increased insect herbivory during this period. Furthermore, the population-level balancing selection signals suggest that frequency-dependent selection determines the frequency of the wax layer to maintain an effective defense system against various herbivores.
Alexander D.H., Novembre J. & Lange K. (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19 (9): 1655–1664.
doi: 10.1101/gr.094052.109.
Álvarez-Carretero S., Kapli P. & Yang Z. (2023) Beginner’s guide on the use of PAML to detect positive selection. Molecular Biology and Evolution 40 (4): msad041.
doi: 10.1093/molbev/msad041.
Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available at:
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Bolger A.M., Lohse M. & Usadel B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (15): 2114–2120.
doi: 10.1093/bioinformatics/btu170.
Browning B.L., Tian X., Zhou Y. & Browning S.R. (2021) Fast two-stage phasing of large-scale sequence data. American Journal of Human Genetics 108 (10): 1880–1890.
doi: 10.1016/j.ajhg.2021.08.005.
Cominelli E., Pilu R. & Sparvoli F. (2020) Phytic acid and transporters: what can we learn from low phytic acid Mutants. Plants (Basel) 9 (1): 69.
doi: 10.3390/plants9010069.
Currano E.D., Wilf P., Wing S.L., Labandeira C.C., Lovelock E.C. & Royer D.L. (2008) Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum. Proceedings of the National Academy of Sciences 105 (6): 1960–1964.
doi: 10.1073/pnas.0708646105.
Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., McVean G., Durbin R. & 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27 (15): 2156–2158.
doi: 10.1093/bioinformatics/btr330.
Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M. & Li H. (2021) Twelve years of SAMtools and BCFtools. GigaScience 10 (2): giab008.
doi: 10.1093/gigascience/giab008.
Deng M., Li Q., Yang S., Liu Y.-C. & Xu J. (2013) Comparative morphology of leaf epidermis in the genus Lithocarpus and its implication in leaf epidermal feature evolution in Fagaceae. Plant Systematics and Evolution 299: 659–681.
doi: 10.1007/s00606-012-0751-0.
Do T.H.T., Martinoia E., Lee Y. & Hwang J.-U. (2021) 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. Plant Physiology 187 (4): 1876–1892.
doi: 10.1093/plphys/kiab193.
Dodd R.S. & Afzal-Rafii Z. (2000) Habitat-related adaptive properties of plant cuticular lipids. Evolution 54 (4): 1438–1444.
doi: 10.1554/0014-3820(2000)054[1438:HRAPOP]2.0.CO;2.
Doyle J. (1991) DNA protocols for plants. In: Hewitt G.M., Johnston A.W.B. & Young J.P.W. (eds.) Molecular Techniques in Taxonomy. Springer, Berlin, Heidelberg, pp. 283–293.
Emms D.M. & Kelly S. (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20: 238.
doi: 10.1186/s13059-019-1832-y.
Excoffier L., Hofer T. & Foll M. (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103: 285–298.
doi: 10.1038/hdy.2009.74.
Fuller Z.L., Mocellin V.J.L., Morris L.A., Cantin N., Shepherd J., Sarre L., Peng J., Liao Y., Pickrell J., Andolfatto P., Matz M., Bay L.K. & Przeworski M. (2020) Population genetics of the coroal Acropora millepora: toward genomic prediction of bleaching. Science 369: 268.
doi: 10.1126/science.aba4674.
Funk J.L., Larson J.E., Ames G.M., Butterfield B.J., Cavender-Bares J., Firn J., Laughlin D.C., Sutton-Grier A.E., Williams L. & Wright J. (2016) Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews 92 (2): 1156–1173.
doi: 10.1111/brv.12275.
Fürstenberg-Hägg J., Zagrobelny M. & Bak S. (2013) Plant defense against insect herbivores. International Journal of Molecular Sciences 14 (5): 10242–10297.
doi: 10.3390/ijms140510242.
Garud N.R., Messer P.W., Buzbas E.O. & Petrov D.A. (2015) Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genetics 11 (2): e1005004.
doi: 10.1371/journal.pgen.1005004.
Gatehouse J.A. (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist 156: 145–169.
doi: 10.1046/j.1469-8137.2002.00519.x.
Go Y.S., Kim H., Kim H.J. & Suh M.C. (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. The Plant Cell 26 (4): 1666–1680.
doi: 10.1105/tpc.114.123307.
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K., Friedman N. & Regev A. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644–652.
doi: 10.1038/nbt.1883.
Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., MacManes M.D., Ott M., Orvis J., Pochet N., Strozzi F., Weeks N., Westerman R., William T., Dewey C.N., Henschel R., LeDuc R.D., Friedman N. & Regev A. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8: 1494–1512.
doi: 10.1038/nprot.2013.084.
Haworth M. & McElwain J. (2008) Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeography, Palaeoclimatology, Palaeoecology 262 (1–2): 79–90.
doi: 10.1016/j.palaeo.2008.02.009.
Hejase H.A., Salman-Minkov A., Campagna L., Hubisz M.J., Lovette I.J., Gronau I. & Siepel A. (2020) Genomic islands of differentiation in a rapid avian radiation have been driven by recent selective sweeps. Proceedings of the National Academy of Sciences 117 (48): 30554–30565.
doi: 10.1073/pnas.2015987117.
Henn J.J., Buzzard V., Enquist B.J., Halbritter A.H., Klanderud K., Maitner B.S., Michaletz S.T., Pötsch C., Seltzer L., Telford R.J., Yang Y., Zhang L. & Vandvik V. (2018) Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science 9: 1548.
doi: 10.3389/fpls.2018.01548.
Howe G.A. & Jander G. (2008) Plant immunity to insect herbivores. Annual Review of Plant Biology 59: 41–66.
doi: 10.1146/annurev.arplant.59.032607.092825.
Jones T.D., Lunt D.J., Schmidt D.N., Ridgwell A., Sluijs A., Valdes P.J. & Maslin M. (2013) Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth-Science Reviews 125: 123–145.
doi: 10.1016/j.earscirev.2013.07.004.
Kang J., Park J., Choi H., Burla B., Kretzschmar T., Lee Y. & Martinoia E. (2011) Plant ABC transporters. Arabidopsis Book 2011 (9): e0153.
doi: 10.1199/tab.0153.
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649.
doi: 10.1093/bioinformatics/bts199.
Koenig D., Jiménez-Gómez J.M., Kimura S., Fulop D., Chitwood D.H., Headland L.R., Kumar R., Covington M.F., Devisetty U.K., Tata A.V., Tohge T., Bolger A., Schneeberger K., Ossowski S., Lanz C., Xiong G., Taylor-Teeples M., Brady S.M., Pauly M., Weigel D., Usadel B., Fernie A.R., Peng J., Sinha N.R. & Maloof J.N. (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences 110 (28): E2655–E2662.
doi: 10.1073/pnas.1309606110.
Kolberg L., Raudvere U., Kuzmin I., Adler P., Vilo J. & Peterson H. (2023) g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Research 51 (W1): W207–W212.
doi: 10.1093/nar/gkad347.
Kozlov A.M., Darriba D., Flouri T., Morel B. & Stamatakis A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35 (21): 4453–4455.
doi: 10.1093/bioinformatics/btz305.
Kryazhimskiy S. & Plotkin J.B. (2008) The population genetics of dN/dS. PLOS Genetics 4 (12): e1000304.
doi: 10.1371/journal.pgen.1000304.
Langmead B. & Salzberg S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359.
doi: 10.1038/nmeth.1923.
Lee S.-B. & Suh M.-C. (2015) Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports 34: 557–572.
doi: 10.1007/s00299-015-1772-2.
Lemoine N.P., Burkepile D.E. & Parker J.D. (2014) Variable effects of temperature on insect herbivory. PeerJ 2: e376.
doi: 10.7717/peerj.376.
Lewandowska M., Keyl A. & Feussner I. (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytologist 227: 698–713.
doi: 10.1111/nph.16571.
Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Available at: arXiv:1303.3997v2.
Li M., Bralower T.J., Kump L.R., Self-Trail J.M., Zachos J.C., Rush W.D. & Robinson M.M. (2022) Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain. Nature Communications 13: 5618.
doi: 10.1038/s41467-022-33390-x.
Liao J.C. (1996) Fagaceae. In: Boufford D. E., Hsieh C. F., Huang T. C., Ohashi H., Yang Y. P. & Lu S. Y. (eds) Flora of Taiwan, 2nd Edition. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan. pp. 51–123.
Lin Y.-P., Chen H.-W., Yeh P.-M., Anand S.S., Lin J., Li J., Noble T., Nair R., Schafleitner R., Samsononova M., Bishop-von-Wettberg E., Nuzhdin S., Ting C.-T., Lawn R.J. & Lee C.-R. (2023) Demographic history and distinct selection signatures of two domestication genes in mungbean. Plant Physiology 193 (2): 1197–1212.
doi: 10.1093/plphys/kiad356.
Louca S. & Doebeli M. (2018) Efficient comparative phylogenetics on large trees. Bioinformatics 34 (6): 1053–1055.
doi: 10.1093/bioinformatics/btx701.
Luo C.-S., Li T.-T., Song Y., Fan T.-T., Shen X.-B., Yi R., Ao X.-P., Xu G.-B., Jiang X.J. & Deng M. (2023) High-quality haplotype-resolved genome assemblies of ring-cup oak (Quercus glauca) provide insight into the demographic dynamics of a dominant tree in East Asia subtropics evergreen broadleaved forests. Molecular Ecology Resources 24 (3): e13914.
doi: 10.1111/1755-0998.13914.
Martín‐Sánchez R., Sancho‐Knapik D., Alonso‐Forn D., López‐Ballesteros A., Ferrio J.P., Hipp A.L., Peguero‐Pina J.J. & Gil‐Pelegrín E. (2024) Oak leaf morphology may be more strongly shaped by climate than by phylogeny. Annals of Forest Science 81: 14.
doi: 10.1186/s13595-024-01232-z.
McFarlane H.E., Shin J.J.H., Bird D.A. & Samuels A.L. (2010) Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell 22 (9): 3066–3075.
doi: 10.1105/tpc.110.077974.
McFarlane H.E., Watanabe Y., Yang W., Huang Y., Ohlrogge J. & Samuels A.L. (2014) Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiology 164 (3): 1250–1260.
doi: 10.1104/pp.113.234583.
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M. & DePristo M.A. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20 (9): 1297–1303.
doi: 10.1101/gr.107524.110.
Mithöfer A. & Boland W. (2012) Plant defense against herbivores: chemical aspects. Annaul Review of Plant Biology 63: 431–450.
doi: 10.1146/annurev-arplant-042110-103854.
Moran E.V., Hartig F. & Bell D.M. (2015) Intraspecific trait variation across scales: implications for understanding global change responses. Global Change Biology 22 (1): 137–150.
doi: 10.1111/gcb.13000.
Nguyen L.-T., Schmidt H.A., von Haeseler A. & Minh B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268–274.
doi: 10.1093/molbev/msu300.
Paradis E. (2010) pegas: an R package for population genetics with an integrated–modular approach
doi: 10.1093/bioinformatics/btp696.
Paradis E. & Schliep K. (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35 (3): 526–528.
doi: 10.1093/bioinformatics/bty633.
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J. & Sham P.C. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81 (3): 559–575.
doi: 10.1086/519795.
Ramírez-Valiente J.A., López R., Hipp A.L. & Aranda I. (2019) Correlated evolution of morphology, gas exchange, growth rates and hydraulics as a response to precipitation and temperature regimes in oaks (Quercus). New Phytologist 227 (3): 794–809.
doi: 10.1111/nph.16320.
Rozewicki J., Li S., Amada K.M., Standley D.M. & Katoh K. (2019) MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Research 47 (W1): W5–W10.
doi: 10.1093/nar/gkz342.
Sancho-Knapik D., Escudero A., Mediavilla S., Scoffoni C., Zailaa J., Cavender-Bares J., Álvarez-Arenas T.G., Molins A., Alonso-Forn D., Ferrio J.P., Peguero-Pina J.J. & Gil-Pelegrín E. (2020) Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytologist 230 (2): 521–534.
doi: 10.1111/nph.17151.
Samuels L., Kunst L. & Jetter R. (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annual Review of Plant Biology 59: 683–707.
doi: 10.1146/annurev.arplant.59.103006.093219.
Schlauch D., Fier H. & Lange C. (2017) Identification of genetic outliers due to sub-structure and cryptic relationships. Bioinformatics 33 (13): 1972–1979.
doi: 10.1093/bioinformatics/btx109.
Schneider C.A., Rasband W.S. & Eliceiri K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 (7): 671–675.
doi:10.1038/nmeth.2089.
Scotese C.R., Song H., Mills B.J.W. & van der Meer D.G. (2021) Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews 215: 103503.
doi: 10.1016/j.earscirev.2021.103503.
Sork V.L., Cokus S.J., Fitz-Gibbon S.T., Zimin A.V., Puiu D., Garcia J.A., Gugger P.F., Henriquez C.L., Zhen Y., Lohmueller K.E., Pellegrini M. & Salzberg S.L. (2022) High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nature Communications 13: 2047.
doi: 10.1038/s41467-022-29584-y.
Sun R., Gols R., Harvey J.A., Reichelt M., Gershenzon J., Pandit S.S. & Vassão D.G. (2020) Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Molecular Ecology 29 (20): 4014–4031.
doi: 10.1111/mec.15613.
Terhorst J., Kamm J.A. & Song Y.S. (2017) Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics 49: 303–309.
doi: 10.1038/ng.3748.
Tommasini R., Vogt E., Fromenteau M., Hörtensteiner S., Matile P., Amrhein N. & Martinoia E. (1998) An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. The Plant Journal 13 (6): 773–780.
doi: 10.1046/j.1365-313X.1998.00076.x.
Tschan G.F. & Denk T. (2012) Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): implications for taxonomy, ecology and evolution. Botanical Journal of the Linnean Society 169 (4): 611–644.
doi: 10.1111/j.1095-8339.2012.01233.x.
Turner S.D. (2018) qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. The Journal of Open Source Software 3 (25): 731.
doi: 10.21105/joss.00731.
Verrier P.J., Bird D., Burla B., Dassa E., Forestier C., Geisler M., Klein M., Kolukisaoglu U., Lee Y., Martinoia E., Murphy A., Rea P.A., Samuels L., Schulz B., Spalding E.J., Yazaki K. & Theodoulou F.L. (2008) Plant ABC proteins--a unified nomenclature and updated inventory. Trends in Plant Science 13 (4): 151–159.
doi: 10.1016/j.tplants.2008.02.001.
War A.R., Paulraj M.G., Ahmad T., Buhroo A.A., Hussain B., Ignacimuthu S. & Sharma H.C. (2012) Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7 (10): 1306–1320.
doi: 10.4161/psb.21663
Weigand H. & Leese F. (2018) Detecting signatures of positive selection in non-model species using genomic data. Zoological Journal of the Linnean Society 184 (2): 528–583.
doi: 10.1093/zoolinnean/zly007.
Wickham H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
Xue D., Zhang X., Lu X., Chen G. & Chen Z.-H. (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Frontiers in Plant Science 8: 621.
doi: 10.3389/fpls.2017.00621.
Yang C.-K. (2019) Taxonomy of Fagaceae of Taiwan. National Taiwan Normal University, Taipei.
Yang J., Lu J., Chen Y., Yan E., Hu J., Wang X. & Shen G. (2020) Large underestimation of intraspecific trait variation and its improvements. Frontiers in Plant Science 11: 53.
doi: 10.3389/fpls.2020.00053.
Yang Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24 (8): 1586–1591.
doi: 10.1093/molbev/msm088
Yeats T.H. & Rose J.K.C. (2013) The formation and function of plant cuticles. Plant Physiology 163 (1): 5–20.
doi: 10.1104/pp.113.222737.
Zhang J., Hwang J.U., Song W.Y., Martinoia E. & Lee Y. (2017) Identification of amino acid residues important for the arsenic re- sistance function of Arabidopsis ABCC1. FEBS Letters 591 (4): 656–666.
doi: 10.1002/1873-3468.12576.
Zhou W., Zhang N., Huang K., Lin H., Tu J., Zheng C., Que P., Chiang C.-Y., Martinez J., Naerhulan H., Székely T., Zhang Z. & Liu Y. (2024) Divergent selection in low recombination regions shapes the genomic islands in two incipient shorebird species. Molecular Biology and Evolution 41 (2): msae006.
doi: 10.1093/molbev/msae006.
Zhou X. & Stephens M. (2012) Genome-wide efficient mixed model analysis for association studies. Nature Genetics 44: 821–824.
doi: 10.1038/ng.2310.