研究生: |
葉為頡 Wei-Chieh Yeh |
---|---|
論文名稱: |
電腦全像條紋投影術之研究 A STUDY ON COMPUTER HOLOGRAPHY FOR FRINGE PROJECTION TECHNIQUE |
指導教授: |
鄭超仁
Cheng, Chau-Jern |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 電腦全像術 、條紋投影技術 、電腦全像片 、空間光調制器 、拓展焦深 |
英文關鍵詞: | Computer holography, Fringe projection technique, Computer-generated hologram, Spatial light modulator, Extend depth of focus |
論文種類: | 學術論文 |
相關次數: | 點閱:330 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,主要探討電腦全像術與條紋投影技術之結合,以達到量測物體三維表面輪廓的目的,此量測系統有別於傳統條紋投影技術所使用的投影裝置,而是以電腦全像片來產生投影條紋,因此本文提出以多平面遞迴演算法來計算電腦全像片,並以此法拓展菲涅耳電腦全像片於矽基液晶空間光調制器所重建的影像焦深,相較於傳統電腦全像片的焦深,此演算方法可將重建影像的焦深於近場的條件下至少拓展兩倍以上,其影像焦深較寬的特性使得重建的實像影像能顯示於曲面上,此不需額外的特殊透鏡即可產生彎曲影像的特性,不僅能運用於如日常所見之抬頭顯示器與投影顯示裝置,且此電腦全像片能依不同需求進行設計的優點亦可適用於各種彎曲面的顯示和應用,故文中將此電腦全像片運用於條紋投影量測系統中,並探討其拓展焦深的特性於量測系統中的效果,於內文中將提出相關理論分析與實驗結果,並加以討論與說明。
In this study, we investigate a combination of computer holography and fringe projection technique to achieve the purpose of measuring the three-dimensional surface profile of an object. This measurement system is different from the traditional projection devices of fringe projection techniques used. Using the computer-generated hologram (CGH) to generating and projecting the patterns. We proposed a multi-plane iterative algorithm to extend depth of focus (DOF) for curved image reconstruction of Fresnel CGH on a liquid crystal on silicon spatial light modulator (LCoS-SLM). Compared to the depth of focus in a conventional CGH, the proposed method can improve the DOF at least 2 times in the near-field image reconstruction. The property of wide depth of focus makes it possible to reconstruct the real images displayed on a curved surface. No extra lens set which is usually used in head-up display and projection display is needed. The CGH customized design is feasible and applied for various curved displays and applications. Therefore, this article will use a CGH on the fringe projection measurement system and to investigate its characteristics of extended depth of focus on the effect of the measurement system. The analytical and experimental results are presented and discussed.
[1] S. H. Rowe and W. T. Welford, “Surface topography of non-optical surfaces by projected interference fringes,” Nature 216, 786-788 (1967).
[2] S. Siva Gorthi and P. Rastogi, “Fringe projection techniques: whither we are ?,” Opt. Lasers Eng. 48, 133-140 (2010).
[3] R. E. Brooks and L. O. Heflinger, “Moiré gauging using optical interference patterns,” Appl. Opt. 8, 935-939 (1969).
[4] H. Takasaki, “Moire Topography,” Appl. Opt. 9, 1467-1472 (1970).
[5] D. M. Meadows, W. O. Johnson, J. B. Allen, “Generation of Surface Contours by Moire Patterns,” Appl. Opt. 9, 942-947 (1970).
[6] C. Lu and S. Inokuchi, “Intensity-modulated moiré topography,” Appl. Opt. 38, 4019-4029 (1999).
[7] V. Srinivasan, H. C. Liu, M. Halioua, “Automated Phase-Measuring Profilometry of 3-D Diffuse Objects,” Appl. Opt. 23, 3105-3108 (1984).
[8] P. S. Huang, F. Jin, and F.-P. Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique,” Opt. Lasers Eng. 31, 371-380 (1999).
[9] C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21-29 (2001).
[10] P. Carré, “Installation et utilisation du comparateur photoélectrique et interferentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
[11] R. Crane, “Interference Phase Measurement,” Appl. Opt. 8, 538-542 (1969).
[12] K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985).
[13] C. Quan, C. Tay, X. Kang, X. He, and H. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2326-2335 (2003).
[14] M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982).
[15] M. Takeda, K. Mutoh, “Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shapes,” Appl. Opt. 22, 3977-3982 (1983).
[16] X. Su, and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35, 263-284 (2001).
[17] W. W. Macy, Jr., “Two-dimensional fringe-pattern analysis,” Appl. Opt, 22, 3898-3901 (1983).
[18] D. C. Ghiglia, G. A. Mastin, L. A. Romero, “Cellular Automata Method for Phase Unwrapping,” J. Opt. Soc. Am. 4, 267-280 (1987).
[19] D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. 11, 107-117 (1994).
[20] X. Chen, J. Xi, Y. Jin, and J. Sun, “Accurate calibration for a camera-projector measurement system based on structured light projection,” Opt. Lasers Eng. 47, 310-319 (2009).
[21] D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
[22] B. R. Brown, A. W. Lohmann, “Complex Spatial Filtering with Binary Masks,” Appl. Opt. 5, 967-970 (1966).
[23] A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739-1748 (1967).
[24] L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150-155 (1969).
[25] R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227-246 (1972).
[26] F. Wyrowski, O. Bryndahl, “Iterative Fourier-Transform Algorithm Applied to Computer Holography,” J. Opt. Soc. Am. 5, 1058-1065 (1988).
[27] H. E. Hwang, H. T. Chang, and W-N. Lie, “Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems,” Opt. Express 17, 13700–13710 (2009).
[28] G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12, 1665-1670 (2004).
[29] E. N. Leith, J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295-1301 (1964).
[30] S. Lowenthal, D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. 61, 847–851 (1971).
[31] W. N. Partlo and W. G. Oldham, “Diffuser speckle model: application to multiple moving diffusers,” Appl. Opt. 32, 3009–3014 (1993).
[32] R. Bräuer, F. Wyrowski, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. 8, 572-578 (1991).
[33] J. L. Horner, “Light utilization in optical correlators,” Appl.Opt. 21, 4511-4514 (1982).
[34] J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812-816 (1984).
[35] N. Konforti, E. Marom, S. T. Wu, “Phase-only modulation with twisted nematic liquid crystal spatial modulators,” Opt. Lett. 13, 251-253 (1988).
[36] T. H. Barnes, T. Eiju, K. Matsuda, and N. Ooyama, “Phase-only modulation using a twisted nematic liquid crystal television,” Appl. Opt. 28, 4845-4852 (1989).
[37] A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid crystal spatial light modulator,” Appl. Opt. 34, 5133-5139 (1995).
[38] C. J. Cheng, Y. C. Lin, M. L. Hsieh, and H. Y. Tu, “Complex modulation characterization of liquid crystal spatial light modulators by digital holographic microscopy,” Jpn. J. Appl. Phys. 47, 3527-3529 (2008).
[39] J. W. Goodman, “Introduction to Fourier Optics”, MeGraw-Hill, New York, 2nd ed. (1996).
[40] I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[41] T. Colomb, N. Pavillon, J. Kuhn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840-1842 (2010).