研究生: |
潘眉秀 Mei-Hsiu Pan |
---|---|
論文名稱: |
矽上微環形共振腔之研究與應用 Study of Optical Resonant Micro-ring Cavity Based on SOI and Application |
指導教授: |
曹士林
Tsao, Shyh-Lin |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 142 |
中文關鍵詞: | 微環形 、矽上絕緣層 、共振腔 、有限差分時域演算法 、濾波器 、波長開關器 |
英文關鍵詞: | Micro-ring, SOI, Cavity, FDTD, filter, wavelength switch |
論文種類: | 學術論文 |
相關次數: | 點閱:172 下載:28 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文為研究內結合光學波導主動與被動式元件其為未來發展之趨勢。我們將光學波導結合光學微環洐共振腔與空橋的結構並建置在SOI矽晶片上,此研究與模擬利用有效差分時域演算法進行模擬與設計。利用自由载子電漿分散效應以及蕭基二極體結構來調變此元件,藉由電光調變共振腔來製作濾波器與光學交換器應用於通訊上。在感測器應用上,我們模擬應用微環形共振器的光濾波器特性,在環形波導區域,利用生物物質之折射率變化,藉此從波導的輸出端擷取出不同的特定信號,並於此論文中,設計微環形共振腔的幾何結構,並探討其感測功率靈敏度之分析。在微環共振器感測器設計應用上我們著重於小尺寸、低成本以及高靈敏度之提升。
In this thesis, we integrated development of optical waveguide for the active and the passive device has become the future trend. We propose optical waveguide components for optical micro-ring resonator building on silicon-on-insulator (SOI) wafers, and also integrated air-bridge structure and the simulation is based on the well-known Finite-difference Time Domain (FDTD) technique. We used the free-carrier plasma dispersion effect and Schottky diode structure to modulate our filter and optical switch device; we devote our attraction on the electro-optical micro-ring resonator to apply in optical communication system. In sensing applications, we also design the geometric structure of resonance cavity to see different resonances are discussed in the thesis. We design the micro-ring their have small size, low cost, and potential for high sensitivity make them attractive for bio-sensing applications.
[1] J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, and G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vacuum Sci. Technol. A, vol. 15, pp. 616–621, 1997.
[2] M. E. McNie, J. S. Burdess, A. J. Harris, J. Hedley, and M.Young, “High aspect ratio ring gyroscope fabricated in silicon on insulator (SOI) material,” in Proc. International Conference on Solid State Sensors and Actuators, Sendai, Japan, Jun. 7–10, 1999.
[3] J. Niehusmann, A. Vörckel, and P. H. Bolivar, “Ultrahigh quality factor silicon-on-insulator micro-ring resonator,” Optics Letters, vol. 29, no. 24 ,Dec. 15, 2004.
[4] R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiplering- resonator filters for optical systems,” IEEE Photon. Technol. Lett., vol. 7, pp. 1447–1449, Dec. 1995.
[5] S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic, double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol., vol. 13, pp. 1766–1771, Aug. 1995.
[6] P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho. “Vertically coupled micro-ring resonators using polymer wafer bonding,” IEEE Photonics Technology Letters vol. 13 pp. 49-51, 2001.
[7] D. Rafizadeh, J. P. Zhang, L. Wang, S. C. Hagness, A. Taflove, S. T. Ho, and R. C. Tiberio, “Semiconductor microcavity resonator multiplexer/demultiplexer,” in Opt. Soc. Amer. Annu. Meet., Rochester, NY, paper ThP4, Oct. 1996.
[8] F. C. Blom, H. Kelderman, H. W. J. M. Hoekstra, A. Driessen, Th. J. A. Popma, S. T. Chu, and B. E. Little. “A single channel dropping flter based on a cylindrical microresonator,” Optics Communications, vol.167 pp.77-82, 1999.
[9] S. Suzuki, K. Shuto, and Y. Hibino, “Integrated-optic ring resonators with two stacked layers of silica waveguide on Si,” IEEE Photon. Technol. Lett., vol. 4, pp. 1256–1258, 1992.
[10] B. E. Little, Member, IEEE, H. A. Haus, Life Fellow, IEEE, J. S. Foresi, L. C. Kimerling, E. P. Ippen, Fellow, IEEE, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photonics Technology Letters, vol. 10, no. 6, June 1998.
[11] R. D. Harris, B. J. Luff, J. S. Wilkinson, R. Wilson, D. J. Schifin, J. Piehler, A. Brecht, R. A. Abuknesha and C. Mouvet, ” Integrated optical surface plasmon resonance biosensor for pesticide analysis,” The Institution of Electrical Engineers. Printed and published by the IEE, Savoy Place, London WCPR OBL, UK. 1995.
[12] C. T. Chu, C. C. Chiang, S. F. Hu and S. L. Tsao, “Design and fabrication of micro ring optical wavelength switches based on SOI waveguide,” Symposium on Nano Device Technology m(SNDT’ 06) Taipei, Taiwan. I 1-23, 2006.
[13] G. C. Liang, Y. W. Liu, and K. Mei, “Full-wave analysis of coplanar waveguide and slot line using the Time-Domain Finite-Difference method,” IEEE Transactions on Microwave Theory and Techniqijes. vol. 37, no. 12, Dec. 1989.
[14] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron, vol. 27, pp. 1971–1974, 1991.
[15] C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo optical micro-modulator with 700-kHz –3-dB bandwidth,” IEEE Photonics Technology Letters, vol. 7, no. 4, pp. 363–365, 1995.
[16] S. Chu, and S. K. Chaudhuri, ”A Finite-Difference Time-Domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol, vol. 7, pp. 2033-2038, Dec. 1989.
[17] K. Okamoto. Fundamentals of Optical Waveguides. Academic Press, 2000.
[18] J. H. Richmond. “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propagation, vol. 13, pp.334-341, May 1965.
[19] M. Misono, N. Henmi, T. Hosoi, and M. Fujiwara, “High-speed wavelength switching and stabilization of an acoustooptic tunable filter for WDM network in broadcasting stations,” IEEE Photonics Technology, vol. 8, no. 4, pp. 572–574, 1996.
[20] T. Sadagopan, S. June Choi, K. Djordjev, and P. D. Dapkus, “Carrierinduced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.,vol. 17, no. 2, pp. 414–416, Feb. 2005.
[21] R. A. Soref, J. Schmidtchen and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on- SiO2,” IEEE J. Quantum Electron., vol. 27, no. 8, pp. 1971-1974, Aug. 1991.
[22] J. C. C. Fan, M. W. Geis, and B. Y. Tsaur, “Lateral epitaxy by seeded solidification for growth of single-crystal Si films on insulators,” Appl. Phys. Lett., vol. 38, no. 5, pp. 365-367, 1981.
[23] Y. Omura, S. Nakashima, and K. Izumi, “Investigation on high-speed performance of 0. l-fim-gate ultrathin-film CMOS/SIMOX,” IEICE Trans. Electron., vol. E15-C, pp. 1491-1497, 1992.
[24] H. G. Bach, A. Umbach, S. van Waasen, R. M. Bertenburg, and G. Unterborsch, “Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application,” IEEE Journal of Selected Topics in Quantum Electronic, vol. 2, no. 2, pp. 418–423, 1996.
[25] S. C. Hagness, D. Rafizadeh, S. T. Ho, and T. Taflove, “FDTD microcavity simulations: Nanoscale waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol., vol. 15, pp. 2154–2165, Nov. 1997.
[26] P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett., vol. 25, pp. 554–556, Apr. 2000.
[27] D. G. Rabus and M. Hamacher, “MMI-coupled ring resonators in GaInAsP-InP,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 812–814, Aug. 2001.
[28] B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO micro-ring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, no. 4, pp. 549–551, Apr. 1998.
[29] J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator micro-ring resonator,” Opt. Lett., vol. 29, no. 24, pp. 2861–2863, 2004.
[30] T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett., vol. 86, no. 9, p. 081 101, 2004.
[31] T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, “Carrier- induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 414–416, Feb. 2005.
[32] J. V. Roey, J. V. D. Donk, and D. Lagasse, “Beam propagation: analysis and assessment,” Journal of the Optical Society of America, vol. 71, pp. 803–810, 1981.
[33] Y. C. Chao. “Optics measurement resolution and BPM errors,” Particle Accelerator Conference, 1997. Proceedings of the 1997, vol. 2, pp. 2125–2127, 1998.
[34] Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics, vol. 26, no. 8, pp. 1335–1339, 1990.
[35] Y. Chung and N. Dagli, “Modeing of guided-wave optical components with efficient finite-difference beam propagation methods,” IEEE Antennas and Propagation Society International Symposium, , July, vol. 1, pp. 248–251, 1992.
[36] D. Yevick, “A guide to electric field propagation techniques for guided-wave optics,” Opt. and Quant. Elec., vol. 26, pp. S185-S197, 1994.
[37] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Selected Topics in Quantum Electronics, vol. 6, pp.150, 2000.
[38] K. S. Yee, ”Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE J. Quantum Electron., vol.14, pp. 302-307, April 1966.
[39] E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech.J., vol. 48, pp. 2103–2132, Sept. 1969.
[40] J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Directional light output from photonic-wire microcavity semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 968–970, Aug. 1996
[41] M. K. Chin, and S. T. Ho, “Design and modeling of waveguide-coupled single-mode micro-ring resonators,” J. Lightwave Technol, vol. 16, pp. 1433-1446, Aug. 1998
[42] P. D. Einnger and L. B. Felsen, “Evanescent waves and complex rays,” IEEE Transactions on Antennas and Propagation, vol. ap-30, no. 4, July 1982 .
[43] A. B. Katrich, “The end of evanescent waves in free space,” CAOL 2005, pp. 172-7 Sep. 2005.
[44] H. Rao, R. Scarmozzino, and R.M. Osgood, Jr., “A bidirectional beam propagation method for multiple dielectric interfaces,” Photon. Technol. Lett., vol. 11, pp. 830-832, 1999.
[45] V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho. “Propagation loss in single-mode GaAs-AlGaAs micro-ring resonators: measurement and model,” IEEE J. Lightwave Technology, vol. 19(11) pp. 1734-1739, 2001.
[46] L. F. Stokes, M. Chodorow, and Shaw H. J. “All single mode fiber resonator,” Optics Letters, vol. 7(6) pp. 288-290, June 1982
[47] T. Tamir (Ed.). Integrated Optics (Second Corrected and Updated Edition). Springer-Verlag, Ger-many, 1982.
[48] E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J.Sel. Topics Quantum Elect., vol. 8, no. 1, pp. 155–62, Jan./Feb. 2002,
[49] M. Chodorow “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Communications Magazine, Feb. 2003
[50] P. D. Dobbelaere, “Digital MEMS for optical switching,” IEEE Commun. Mag., vol. 40, no. 3, pp. 88–95, Mar. 2002.
[51] Y. A. Peter, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Tech. Lett., vol. 14, no. 3, pp. 301–03, Mar. 2002.
[52] R. J. Reason, “Optical space switch architectures based upon lithium niobate crosspoints,” J. Brit. Telecom. Techno.l, vol. 7, no. I, Jan. 1989.
[53] T. Bakke, C. P. Tigges, and C. T. Sullivan, “1×2 MOEMS switch basedon silicon-on-insulator and polymeric waveguides,” Elect. Lett., vol. 38, no. 4, pp. 177–78, Feb. 14, 2002.
[54] J. P. Lorenzo and R. A. Soref, “1.3 μm Eectro-Optic silicon switch,” Appl. Phys. Lett., vol. 51, no. 1, pp. 6–8, 1987.
[55] Van, V. et al., “All-Optical nonlinear switching in GaAs- AlGaAs micro-ring resonators,” IEEE Photon. Technol. Lett., vol. 14, no. l, pp.74-76, 2002.
[56] B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen and D. J. Ripin, “Wavelenght switching and routing using absorption and resonance,” IEEE Photonic Technology Letters, vol. 10, no. 6, 816-818, 1998.
[57] S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato and Y. Kokubun, “An eight channeladd-drop filter using vertically coupled micro-ring resonators over a cross grid,” IEEE Photonic Technology Letters, vol. ILL, no. 6,691-693, 1999.
[58] A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” IEEE Journal of Lightwave Technology, vol. 15, no. 3, pp. 505–518, 1997.
[59] P. D. Hewitt and G. T. Reed, “Improving the response of optical phase modulators in SOI by computer simulation,” IEEE Journal of Lightwave Technology, vol. 18, no. 3, pp. 443–450, 2000.
[60] R. A. Soref, and B. R. Bennett, “Electro optical effects in silicon,” IEEE Journal of Quantum Electronics, vol. QE-23, no. 1, pp. 123–129, 1987.
[61] A. Vonsovice and A. Koster, “Numerical simulation of a silicon-on-insulator waveguide structure for phase modulation at 1.3m,” IEEE Journal of Lightwave Technology, vol. 17, no. 1, pp. 129–135, 1999.
[62] C. T. Chu, C. W. Tsai, S. L. Tsao, “Design and analysis of integrated optical one-dimensional resonant photonic bandgap filter based on SOI waveguide,” Proc. Of National Symposium on Telecommunications, pp.1533~1538, Dec. 3~4 2004.
[63] C. T. Chu, C. C. Chiang, S. F. Hu and S. L. Tsao, “Design and Fabrication of micro ring optical wavelength switches based on SOI waveguide,” Symposium on Nano Device Technology m(SNDT’06) Taipei, Taiwan. I 1-23, 2006.
[64] J. L. Yang, S.C. Tjin and N.Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Applied Physics B: Lasers and Optics, vol. 78, pp. 345-349, 2004.
[65] J. Bromage, L.E. Nelson, C.H. Kim, P.J. Winzer, R.-J. Essiambre and R.M. Jopson, “Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance,” Optical Fiber Communication Conference and Exhibit (OFC 2002), pp. 119-120, 2002.
[66] H. G. Bach, A. Umbach, S. van Waasen, R. M. Bertenburg, and G. Unterborsch, “Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application,” IEEE Journal of Selected Topics in Quantum Electronic, vol. 2, no. 2, pp. 418–423, 1996.
[67] A. F. Jezierski and P. J. R. Layborn, “Integrated semiconductor ring lasers,” Inst. Elect. Eng. Proc. J., vol. 135, pp. 17–24, Feb. 1988.
[68] T. Krauss, P. J. R. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electon. Lett., vol. 26, pp. 2095–2097, Dec. 1990.
[69] D. Rafizadeh, J. P. Zhang, L. Wang, S. C. Hagness, A. Taflove, S. T. Ho, and R. C. Tiberio, “Semiconductor microcavity resonator multiplexer/demultiplexer,” in Opt. Soc. Amer. Annu. Meet., Rochester, NY, paper ThP4, Oct. 1996.
[70] D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free spectral range,” presented at CLEO’97, Baltimore, MD, 1997, paper CPD-23; also in Opt. Lett., vol. 22, pp. 1244–1246, 1997.
[71] U. Hempelmann, “All-Optical Switching Due to Cascaded Second-Harmonic Generation in Directional Couplers with Laterally Varying Phase Mismatches,” IEEE Journal of Quantum Electronics, vol. 35, no. 12, Dec. 1999.
[72] C. Y. Chao, W. Fung, and L. J. Guo, Member, IEEE.” Polymer micro-ring resonators for biochemical sensing applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 1, pp. 132–142, 2006.
[73] R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic swutch and its application to 8×8 optical matrix switch,” Journal of Lightwave Technology, vol. 20, no. 6, pp. 993–1000, 2002.
[74] T. Sakata, H. Togo, M. Makihara, F. Shimokawa, and K. Kaneko, “Improvement of switching time in a thermocapillarity optical switch,” Journal of Lightwave Technolongy, vol. 19, no. 7, pp. 1023–1027, 2001.
[75] C. Y. Chao, W. Fung, and L. J. Guo, “Polymer micro-ring resonators for biochemical sensing applications,” IEEE Jounal of selected topic in quantum electronics, vol. 12, no. 1, pp. 132–142, 2006.
[76] C. Y. Chao and L. J. Guo, “Design and optimization of micro-ring resonators in biochemical sensing applications,” Journal of Lightwave Technology, vol. 24, no. 3, pp. 1395–1402, 2006.
[77] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal Bioanal Chem, 377 : 528–539, 2003.
[78] C. W. Lin, C. L. Lee, W. S. Wang, C. K. Lee, “A Novel Cross-Reference Dual-Window SPR sensor based on single silica optical waveguide,” The Institution of Electrical Engineers, 2004
[79] A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technology Letters, VOL. 18, NO. 23, DEC 1, 2006
[80] L. J. Pursiainena and J. J. Baumberg, “Compact strain-sensitive flexible photonic crystals for sensors,” Plied Physics Letters 87, 101902, 2005.
[81] A. Yalcın, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, “Optical sensing of biomolecules using microring resonators,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 1, Jan. 2006.