簡易檢索 / 詳目顯示

研究生: 林源隆
Lin, Yuan-Long
論文名稱: 老人與非老人急診住院預測與評分表發展之研究
Research on the Development of Prediction and Scoring Models for Emergency Hospital Admissions in Elderly and Non-Elderly Patients
指導教授: 吳怡瑾
Wu, I-Chin
口試委員: 吳怡瑾
Wu, I-Chin
陳子立
Chen, Tzu-Li
唐牧群
Tang, Muh-Chyun
口試日期: 2024/07/26
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 165
中文關鍵詞: 年紀BERT主訴住院預測住院評分表XGBoost
英文關鍵詞: Age, BERT, Chief Complaints, Prediction of Hospital Admission, Hospitalization Scoring System, XGBoost
研究方法: 實驗研究統計方法資料分析處理文獻探討
論文種類: 學術論文
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無論是流感、大流行特殊傳染病疾病傳播事件,如: 新冠疫情(COVID-19)的傳播,屢屢會使逐年攀升的醫療需求更為加重,若能初步在急診檢傷階段精確地識別不同優先順序的患者進行看診,有益幫助患者縮短待診時間。本研究與台北馬偕紀念醫院急診部合作,以電子病歷系統(Electronic Health Record,EHR)的資料為分析對象,資料範圍在2019年至2022上半年,總計372,820筆就診紀錄。並拆分上、下半年與非老人、老人,共14個資料集相比較各時間區段的變化。欄位包含診斷關鍵的非結構化資料——主訴(Chief Complaint)和結構化資料(如:年齡、檢傷級數、到院方式、血壓等),試圖透過統計描述、自然語言處理技術(Natural Language Processing,NLP)之BERT模型和集成學習演算法(Ensemble Learning)中的XGBoost,推測疫情前、中、後不同時期之影響與住院患者的主要變數因子。後續藉由過往文獻或臨床研究、演算法變數篩選,初步探索建立非疫情期間(Non-Pandemic Periods)與疫情期間(COVID-19 Pandemic Periods)的住院風險評估表,以供急診實務上使用。

    主要結果發現本研究新增的三項變數(腦傷程度、呼吸頻率、供氧狀態)可以提高兩種模型的預測能力(BERT的AUROC: 0.8643-0.9815 提升至 0.9075-0.9879 ;XGBoost的AUROC: 0.7847-0.8603 提升至 0.7862-0.8605),多數時候「非老人」的預測結果是好於「老人組」。最佳的住院預測結果在「2021下半年」,推估疫情中後期患者的就診行為較為雷同,因此模型學習到相似的模式。由於BERT展現對文本資料的強大分析優勢,進而將BERT輸出層的住院機率值整合至XGBoost當成其中輸入變數。實驗結果發現能夠大幅度提高XGBoost的預測能力(AUROC: 0.7881-0.8605 提升至 0.9122-0.9858)。 住院評分表建立的探索,同樣也增加「主訴預測住院機率值」來達到區別非住院組及住院組兩群的驗證效果。由此可知合作醫院的主訴語料品質非常好,亦結合穩定性良好的BERT語言模型,達成準確度高的預測性。

    Whether it is influenza or pandemic-specific infectious disease transmission events, such as the COVID-19 pandemic, they repeatedly exacerbate the rising demand for healthcare. If, at the initial stage of emergency triage, injuries can be accurately identified to prioritize patients for treatment, it would help shorten the waiting time for medical care. This study, in collaboration with the Department of Emergency Medicine at MacKay Memorial Hospital in Taipei, analyzed data from the Electronic Health Record (EHR) system, covering the first half of the period from 2019 to 2022, with a total of 372,820 records. The data was split into the first and second halves of the year and further divided into non-elderly and elderly groups, resulting in a total of 14 datasets to compare changes in each time zone. The fields contain unstructured data—Chief Complaint, which is key to diagnosis, and structured data (e.g., Age, Triage level, Mode of arrival, Blood pressure, etc.). The study attempted to support clinical diagnosis through statistical description, the BERT model of Natural Language Processing (NLP), and XGBoost of Ensemble Learning. Subsequently, by referencing past literature, clinical studies, and algorithmic variable screening, we preliminarily explored establishing a Hospitalization Scoring System for Non-Pandemic Periods and COVID-19 Pandemic Periods for practical use in emergency medicine.

    The main results found that the three new variables (Glasgow Coma Scale, Respiratory Rate, and Oxygen Saturation) in this study improved the predictive ability of both models. The AUROC for BERT increased from 0.8643-0.9815 to 0.9075-0.9879, and for XGBoost, it increased from 0.7847-0.8603 to 0.7862-0.8605. Most of the time, the "non-elderly" group had better predictive results than the "elderly" group. The best hospitalization prediction result was in the "second half of 2021", which is speculated to be because patient behavior during the middle and later stages of the epidemic was relatively similar, allowing the model to learn similar patterns. Since BERT demonstrates a strong advantage in analyzing text data, the hospitalization probability values from the BERT output layer were integrated into XGBoost as one of the input variables. The experimental results showed a significant improvement in the predictive power of XGBoost (AUROC: 0.7881-0.8605 increased to 0.9122-0.9858). In the establishment of the Hospitalization Scoring System, the "Chief Complaints hospitalization probability value" was also added to achieve the verification effect of distinguishing the non-hospitalization group and the hospitalization group. It can be seen from this that the quality of the Chief Complaints corpus of the cooperative hospital is excellent, and combined with the stable BERT language model, it can achieve high-accuracy prediction.

    摘要 ii Abstract iii 目次 iv 表次 vi 圖次 x 第一章 緒論 1  第一節 研究動機 1  第二節 研究目的 5 第二章 文獻探討 7  第一節 新冠疫情期間診斷(diagnosis)與 預後(prognosis)預測模型相關研究 7  第二節 疫情期間住院與住院後死亡評分表 11 第三章 研究架構與資料前處理 19  第一節 研究問題與架構 19  第二節 資料描述與預處理 23 第四章 研究方法與資料描述統計 27  第一節 急診描述性資料介紹與檢定 27  第二節 演算法介紹及成效評估 45 第五章 住院預測實驗規劃與結果討論 53  第一節 實驗規劃與編碼 53  第二節 採用BERT於新冠疫情前中後時期之住院預測比較分析 56  第三節 採用XGBoost於新冠疫情前中後時期之住院預測比較分析 60  第四節 模型預測效力評比和綜合討論 66  第五節 整合BERT預測於XGBoost模型之實驗結果與討論 74  第六節 BERT混合KeyBERT模型之主訴關鍵字提取 83 第六章 住院評分表建立與驗證 95  第一節 評分表變數分數參考文獻回顧 95  第二節 住院評分表設計 96  第三節 四種評分表驗證及分析 99 第七章 結論與未來展望 114 參考文獻 118 附錄 122  附錄一 四種預測住院評分表驗證之長條圖與箱形圖 122  評分表(1):非疫情期間之變數 122  評分表(2):非疫情期間之變數+主訴機率值 126  評分表(3):疫情期間之變數 130  評分表(4):疫情期間之變數+主訴機率值 134  附錄二 四種預測住院評分表實驗之住院機率分佈 138  評分表(1):非疫情期間之變數-2019年 138  評分表(1):非疫情期間之變數-2020年 139  評分表(1):非疫情期間之變數-2021年 140  評分表(1):非疫情期間之變數-2022上半年 142  評分表(2):非疫情期間之變數+主訴機率值-2019年 144  評分表(2):非疫情期間之變數+主訴機率值-2020年 146  評分表(2):非疫情期間之變數+主訴機率值-2021年 148  評分表(2):非疫情期間之變數+主訴機率值-2022上半年 150  評分表(3):疫情期間之變數-2019年 152  評分表(3):疫情期間之變數-2020年 153  評分表(3):疫情期間之變數-2021年 155  評分表(3):疫情期間之變數-2022上半年 156  評分表(4):疫情期間之變數+主訴機率值-2019年 158  評分表(4):疫情期間之變數+主訴機率值-2020年 160  評分表(4):疫情期間之變數+主訴機率值-2021年 162  評分表(4):疫情期間之變數+主訴機率值-2022上半年 164

    中文文獻
    王鳳琴、吳宜珍、陳美杏、林宗憲、葉怡亨、吳彥鴻 (2021)。透過急診病人流分析COVID-19對醫學中心急診之影響。醫療品質,9(2),9-21。取自https://doi.org/10.29759/THQA.202106_9(2).0001
    林志遠、鄭鳳翔、李玉春(2021)。時間敏感性狀況:分類、測量及對可避免急診與住院之意涵。台灣公共衛生雜誌,40(6),615-630。取自https://doi.org/10.6288/TJPH.202112_40(6).110101
    侯佳弦、徐邦治、怡懋.蘇米(2020)。早期警示系統之簡介與運用。護理雜誌,67(1),6–11。https://doi.org/10.6224/JN.202002_67(1).02
    徐愬美、李文瑞、楊淑貞、林岳鴻、吳協兆、李昭賢(2019)。建置早期警訊系統降低院內急救事件發生率。醫療品質雜誌,13(1),48–53。
    陳彥伯(2021)。基於Word2vec與XGBoost方法之急診住院預測研究。https://hdl.handle.net/11296/3zje5u
    楊鎧溶(2023)。基於自然語言技術之急診病患檢傷階段再住院預測研究。https://hdl.handle.net/11296/m88a28
    賈子賢(2024)。COVID-19非疫情與疫情期間之急診住院與再住院預測研究。https://hdl.handle.net/11296/s42yw9
    蔡哲宏、蔡耀德、翁紹仁、劉士嘉 (2021)。急診壅塞的原因與改善策略。台灣公共衛生雜誌,40(1),8-29。取自https://doi.org/10.6288/TJPH.202102_40(1).109124
    英文文獻
    An, Y., Yang, Y., Wang, A., Li, Y., Zhang, Q., Cheung, T., Ungvari, G. S., Qin, M.-Z., An, F.-R., & Xiang, Y.-T. (2020). Prevalence of depression and its impact on quality of life among frontline nurses in emergency departments during the COVID-19 outbreak. Journal of Affective Disorders, 276, 312–315. https://doi.org/10.1016/j.jad.2020.06.047
    Baker, K. F., Hanrath, A. T., Schim van der Loeff, I., Kay, L. J., Back, J., & Duncan, C. J. (2021). National Early Warning Score 2 (NEWS2) to identify inpatient COVID-19 deterioration: A retrospective analysis. Clinical Medicine, 21(2), 84–89. https://doi.org/10.7861/clinmed.2020-0688
    Cameron, A., Rodgers, K., Ireland, A., Jamdar, R., & McKay, G. A. (2015). A simple tool to predict admission at the time of triage. Emergency Medicine Journal, 32(3), 174–179. https://doi.org/10.1136/emermed-2013-203200
    Carr, E., Bendayan, R., Bean, D., Stammers, M., Wang, W., Zhang, H., Searle, T., Kraljevic, Z., Shek, A., Phan, H. T. T., Muruet, W., Gupta, R. K., Shinton, A. J., Wyatt, M., Shi, T., Zhang, X., Pickles, A., Stahl, D., Zakeri, R., … Dobson, R. J. B. (2021). Evaluation and improvement of the National Early Warning Score (NEWS2) for COVID-19: A multi-hospital study. BMC Medicine, 19(1), 23. https://doi.org/10.1186/s12916-020-01893-3
    Clift, A. K., Coupland, C. A. C., Keogh, R. H., Diaz-Ordaz, K., Williamson, E., Harrison, E. M., Hayward, A., Hemingway, H., Horby, P., Mehta, N., Benger, J., Khunti, K., Spiegelhalter, D., Sheikh, A., Valabhji, J., Lyons, R. A., Robson, J., Semple, M. G., Kee, F., … Hippisley-Cox, J. (2020). Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: National derivation and validation cohort study. BMJ, 371, m3731. https://doi.org/10.1136/bmj.m3731
    Colombo, C. J., Colombo, R. E., Maves, R. C., Branche, A. R., Cohen, S. H., Elie, M.-C., George, S. L., Jang, H. J., Kalil, A. C., Lindholm, D. A., Mularski, R. A., Ortiz, J. R., Tapson, V., Liang, C. J., & Group, O. behalf of the A.-1 S. (2021). Performance Analysis of the National Early Warning Score and Modified Early Warning Score in the Adaptive COVID-19 Treatment Trial Cohort. Critical Care Explorations, 3(7), e0474. https://doi.org/10.1097/CCE.0000000000000474
    Goodacre, S., Thomas, B., Sutton, L., Burnsall, M., Lee, E., Bradburn, M., Loban, A., Waterhouse, S., Simmonds, R., Biggs, K., Marincowitz, C., Schutter, J., Connelly, S., Sheldon, E., Hall, J., Young, E., Bentley, A., Challen, K., Fitzsimmons, C., … Walter, D. (2021). Derivation and validation of a clinical severity score for acutely ill adults with suspected COVID-19: The PRIEST observational cohort study. PLOS ONE, 16(1), e0245840. https://doi.org/10.1371/journal.pone.0245840
    Gupta, R. K., Harrison, E. M., Ho, A., Docherty, A. B., Knight, S. R., Smeden, M. van, Abubakar, I., Lipman, M., Quartagno, M., Pius, R., Buchan, I., Carson, G., Drake, T. M., Dunning, J., Fairfield, C. J., Gamble, C., Green, C. A., Halpin, S., Hardwick, H. E., … Young, P. (2021). Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: A prospective cohort study. The Lancet Respiratory Medicine, 9(4), 349–359. https://doi.org/10.1016/S2213-2600(20)30559-2
    Gupta, R. K., Marks, M., Samuels, T. H. A., Luintel, A., Rampling, T., Chowdhury, H., Quartagno, M., Nair, A., Lipman, M., Abubakar, I., Smeden, M. van, Wong, W. K., Williams, B., & Noursadeghi, M. (2020). Systematic evaluation and external validation of 22 prognostic models among hospitalised adults with COVID-19: An observational cohort study. European Respiratory Journal, 56(6). https://doi.org/10.1183/13993003.03498-2020
    Hu, H., Yao, N., & Qiu, Y. (2020). Comparing Rapid Scoring Systems in Mortality Prediction of Critically Ill Patients With Novel Coronavirus Disease. Academic Emergency Medicine, 27(6), 461–468. https://doi.org/10.1111/acem.13992
    Hu, H., Yao, N., & Qiu, Y. (2022). Predictive Value of 5 Early Warning Scores for Critical COVID-19 Patients. Disaster Medicine and Public Health Preparedness, 16(1), 232–239. https://doi.org/10.1017/dmp.2020.324
    Jones, D., Cameron, A., Lowe, D. J., Mason, S. M., O’Keeffe, C. A., & Logan, E. (2019). Multicentre, prospective observational study of the correlation between the Glasgow Admission Prediction Score and adverse outcomes. BMJ Open, 9(8), e026599. https://doi.org/10.1136/bmjopen-2018-026599
    Kaeley, N., Mahala, P., Kabi, A., Choudhary, S., Hazra, A. G., & Vempalli, S. (2021). Utility of early warning scores to predict mortality in COVID-19 patients: A retrospective observational study. International Journal of Critical Illness and Injury Science, 11(3), 161–166. https://doi.org/10.4103/ijciis.ijciis_64_21
    Martín-Rodríguez, F., Martín-Conty, J. L., Sanz-García, A., Rodríguez, V. C., Rabbione, G. O., Cebrían Ruíz, I., Oliva Ramos, J. R., Castro Portillo, E., Polonio-López, B., Enríquez de Salamanca Gambarra, R., Gómez-Escolar Pérez, M., & López-Izquierdo, R. (2021). Early Warning Scores in Patients with Suspected COVID-19 Infection in Emergency Departments. Journal of Personalized Medicine, 11(3), Article 3. https://doi.org/10.3390/jpm11030170
    Olsson, T., Terent, A., & Lind, L. (2004). Rapid Emergency Medicine score: A new prognostic tool for in-hospital mortality in nonsurgical emergency department patients. Journal of Internal Medicine, 255(5), 579–587. https://doi.org/10.1111/j.1365-2796.2004.01321.x
    RCoP, L. (2012). National Early Warning Score (NEWS): standardising the assessment of acute-illness severity in the NHS. Report of working party. London: Royal College of Physicians.
    Ruangsomboon, O., Phanprasert, N., Jirathanavichai, S., Puchongmart, C., Boonmee, P., Thirawattanasoot, N., Dorongthom, T., praphruetkit, N., & Monsomboon, A. (2023). The utility of the Rapid Emergency Medicine Score (REMS) compared with three other early warning scores in predicting in-hospital mortality among COVID-19 patients in the emergency department: A multicenter validation study. BMC Emergency Medicine, 23(1), 45. https://doi.org/10.1186/s12873-023-00814-w
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. ukasz, & Polosukhin, I. (2017). Attention is All you Need. Advances in Neural Information Processing Systems, 30.
    Wynants, L., Calster, B. V., Collins, G. S., Riley, R. D., Heinze, G., Schuit, E., Albu, E., Arshi, B., Bellou, V., Bonten, M. M. J., Dahly, D. L., Damen, J. A., Debray, T. P. A., Jong, V. M. T. de, Vos, M. D., Dhiman, P., Ensor, J., Gao, S., Haller, M. C., … Smeden, M. van. (2020). Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ, 369, m1328. https://doi.org/10.1136/bmj.m1328
    Yan, L., Wang, W., Luo, R., & Hu, H. (2021). Five rapid scoring systems for predicting the mortality of severe novel coronavirus disease patient. The American Journal of Emergency Medicine, 45, 611–612. https://doi.org/10.1016/j.ajem.2020.11.076

    無法下載圖示 電子全文延後公開
    2030/01/02
    QR CODE