簡易檢索 / 詳目顯示

研究生: 朱培源
Pei Yuan Chu
論文名稱: 環形諧波鎖模光纖雷射之研究與應用
Study of Fiber Ring Harmonic Mode-Locked Laser and Applications
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 109
中文關鍵詞: 環形雷射高速脈衝
英文關鍵詞: fiber laser, high pulse train
論文種類: 學術論文
相關次數: 點閱:127下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出利用不同調變器於環形光纖雷射架構做調變,並利用振幅調變器外加調變信號對共振腔內部做振幅調變產生高速脈衝信號並放入半導體光放大器於架構中以達到振幅鎖模與脈衝穩定的效果,之後我們再利用相位調變器外加調變信號使其共振腔內部的縱像模態做相位的鎖模,最後使用外加信號激發極化鍵控調變器利用極化的變化以達到高速脈衝鎖模的效果。在本實驗中使用三種不同的調變器,並加調變信號加以分析,脈衝重複率、脈衝抖動、上升時間的影響。

    In this thesis, we propose a fiber ring harmonic mode-locked fiber laser and detuning modulation frequency. We generate amplitude modulation by exciting outside RF modulation signal. In case of producing high speed pulse train signal, we also drive SOA in the fiber ring cavity system to stable the output high speed pulse train. Then we also generate phase modulation by exciting outside RF signal to make the phase longitudinal modes locking. At the last, we utilize polarization shift keying technique to produce high speed pulse train in the fiber ring cavity system.
    In this fiber ring cavity system, we use three different kinds component to produce high speed pulse train and detuning the RF modulation frequency to analyze the repetition rate, RMS jitter, and rise time, respectively.

    Chapter 1 Introduction....................................1 Chapter 2 Amplitude Modulated Harmonic Mode-Locked Fiber Laser.....................................................4 2-1 Introduction..........................................4 2-2 Theory of Mode-Locking................................7 2-2-1 Active mode locked.................................10 2-2-2Amplitude Modulation Mode Locking...................11 2-2-3 Rational Harmonic Mode-Locking.....................12 2-3Experimental Amplitude Analysis of Harmonic Mode-Locked Fiber Laser with SOA.....................................14 2-3-1 Theory of SOA..................................14 2-3-2 Experimental Setup.............................17 2-3-3 Analysis of Results............................18 2-3-3-1 5 GHz Pulse Train Generation............19 2-3-3-2 10 GHz Pulse Train Generation....................19 2-3-3-3 15 GHz Pulse Train Generation....................19 2-3-3-4 25 GHz Pulse Train Generation....................20 2-3-3-5 30 GHz Pulse Train Generation....................20 2-3-3-6 40 GHz Pulse Train Generation....................20 2-4 Discussion and Summary...............................20 Chapter 3 Apply Phase Modulation Harmonic Mode-Locked Fiber Ring Laser...............................................35 3-1 Introduction ........................................35 3-2 Phase Modulation Mode Locking........................38 3-2-1 Harmonic Mode-Locking..............................40 3-2-2 Noise Source of Active Mode-Locking................43 3-3 Experimental Phase Analysis of Harmonic Mode-Locked Fiber Laser..............................................43 3-3-1 Experimental Setup.............................44 3-3-2 Experimental Results...........................44 3-3-2-1 5 GHz Pulse Train Generation.....................46 3-3-2-2 10 GHz Pulse Train Generation....................46 3-3-2-3 20 GHz Pulse Train Generation....................47 3-3-2-4 50 GHz Pulse Train Generation....................47 3-4 Summary..............................................48 Chapter 4 PolSK Modulated Harmonic Mode-Locked Fiber Ring Laser................................................... 60 4-1 Introduction.........................................60 4-2 Theory of PolSK......................................63 4-2-1 Performance of PolSK Modulation Schemes............73 4-2-2 Principles of Operation – Optical.................78 4-2-3 Principles of Operation – Electrical..............80 4-3 PolSK of Harmonic Mode-Locked Fiber Ring Laser Experiment...............................................80 4-3-1Experimental Setup..................................81 4-4 Experimental Result..................................82 4-4-1 5 GHz Pulse Train Generation.......................83 4-4-2 7.5 GHz Pulse Train Generation.....................83 4-4-3 10 GHz Pulse Train Generation......................84 4-4-4 20 GHz Pulse Train Generation......................84 4-5 Summary..............................................85 Chapter 5 Conclusions....................................97 Reference................................................99

    [1] I. N. Duling III, “Subpicosecond all-fiber erbium laser,” Electron. Lett., vol. 27, pp. 544-545, 1991.
    [2] R. Ludwig, U. Feiste, S. Diez, C. Schubert, C. Schmidt, H. J. Ehrke and H. G. Weber, “Unrepeatered 160Gbit/s RZ single-channel transmission over 160km of standard fibre at 1.55μm with hybrid MZI optical demultiplexer,” Electron. Lett., vol. 36, pp. 1405-1406, 2000.
    [3] S. B. Poole, D. N. Payne and M. E. Fermann, “Fabrication of low loss optical fibres containing rare-earth ions,” Electron. Lett., vol. 21, pp. 737-738, 1985.
    [4] H. J. Lee, K. Kim, and H. G. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun., vol. 160, pp. 51–56, 1999.
    [5] S. Betti, T. Curti, B. Daino, G. De Marchis and E. Iannone, “State of polarization and phase noise independent coherent optical transmission system based on Stokes parameter detection,” Electron. Lett., vol. 24, pp. 1461-1462, 1988.

    [6] J. Mark, L. Y. Liu, K. L. Hall, H. A. Haus and E. P. Ippen, “Femtosecond pulse generation in a laser with a nonlinear external resonator,” Opt. Lett., vol. 14, pp. 48–50, 1989.
    [7] E. P. Ippen, H. A. Haus and L. Y. Liu, “Additive pulse modelocking,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 6, pp. 1736–1745, 1989.
    [8] D. K. Negus, L. Spinelli, N. Goldblatt and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens mode-locking in Ti :Al2O3 ,” OSA Proc. Advanced Solid-State Lasers, vol. 10, pp. 120–124, 1991.
    [9] F. Salin, J. Squier and M. Piche, “Mode locking of Ti :Al2O3 lasers and self-focusing : A Gaussian approximation,” Opt. Lett., vol. 16, pp. 1674–1676, 1991.
    [10] K. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett., vol. 18, pp. 1080–1082, 1993.
    [11] D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser-part I: theory,” IEEE J. Quantum Electron., vol. QE-6, pp. 694-708, 1970.
    [12] 蔡馥宇, “40GHz 主動諧波鎖模光纖雷射之研究,” 碩士論文, 國立交通大學, 民國93年
    [13] R. Kiyan, O. Deparis, O. Pottiez, P. Megret and M. Blondel, “Long term stable operation of a rational harmonic actively mode locked Er doped fibre laser with repetition rate doubling,” Proc.Of European Conf. On Optical Communication, ECOC’93, September 1999, Nice, France, pp. 180-181.
    [14] G. E. Town, L. Chen and P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett., vol. 12, pp. 1459-1461, 2000.
    [15] S.Yamashita and K. Hsu, “Active modelocking of miniature fibre Fabry-Perot laser in ring cavity,” IEE Electron. Lett., vol. 37, pp. 1115-1116, 2001/
    [16] R. L. Fork, B. I. Greene and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking,” Appl. Phys. Lett., vol. 38, pp. 617–619, 1981.
    [17] M. Piche, “Beam reshaping and self-mode-locking in nonlinear laser resonators,” Opt. Commun., vol. 86, pp. 156–160, 1991.
    [18] S. Y. Chen and J. Wang, “Self-starting issues of passive self-focusing mode locking”, Opt Lett., 1991,pp.1689
    [19] Z. Ahmed, and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fibre ring lasers,” Electron. Lett., vol. 5, pp. 55-57, 1996.
    [20] D. L. A. Seixas, and M. C. R. Carvalho, “50 GHz fiber ring laser using rational harmonic mode-locking,” IEEE MTT-S IMOC., vol. 1, pp. 351–353, 1987.
    [21] G. P. Agrawal, N. K. Dutta, Long-Wavelength SemiconductorLasers, New York: Van Nostrand Reinhold, 1986. Ch3.
    [22] J. Yu, P. Jeppesen, “Improvement of cascaded semiconductor optical amplifier gates by using holding light injection,” IEEE J. Lightwave Technology, vol.19, no.5, pp.614-623, 2001.
    [23] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” IEEE J. Lightwave Technology, vol.6, no. 4, pp. 531-543, Apr. 1988.
    [24] G. Eisenstein and L. W. Stulz, “High quality Antireflection Coatings on Laser Facets by Sputtered Silicon Nitride,” Applied Optics, vol.23, no.1, pp.161-164, 1984.
    [25] T. F. Carruthers and I. N. Duling, “10-GHz, 1.3-ps erbium fiber laser
    employing soliton pulse shortening,” Opt. Lett., vol. 21, no. 23, pp.
    1927–1929, 1996.
    [26] M. Nakazawa and E. Yoshida, “A 40-GHz 850 fs regeneratively FM
    mode-locked polarization-maintaining erbium fiber ring laser,” IEEE
    Photon. Technol. Lett., vol. 12, no. 12, pp. 1613–1615, Dec. 2000.
    [27] J. D. Moores, W. S. Wong, and K. L. Hall, “50-Gbit/s optical pulse
    storage ring using novel rational-harmonic modulation,” Opt. Lett., vol.20, no. 24, pp. 2547–2549, 1995.
    [28] Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively modelocked fiber ring lasers,” Electron. Lett., vol. 32, no. 5, pp. 455–457, 1996.
    [29] M. Y. Jeon, H. K. Lee, J. T. Ahn, K. H. Kim, D. S. Lim, and E. H.
    Lee, “Pulse-amplitude-equalized output from a rational harmonic modelocked fiber laser,” Opt. Lett., vol. 23, no. 11, pp. 855–857, 1998.
    [30] Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, “Theoretical and experimental study of pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser,” IEEE J. Quantum Electron., vol. 37, no. 1, pp. 33–37, Jan. 2001.
    [31] S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao,
    “Pulse-amplitude-equalization in a rational harmonic mode-locked
    fiber ring laser by using modulator as both mode-locker and equalizer,”IEEE Photon. Technol. Lett., vol. 15, no. 3, pp. 389–391, Mar. 2003.
    [32] K. S. Abedin, N. Onodera, and M. Hyodo, “Higher order FM modelocking for pulse-repetition-rate enhancement in actively mode-locked lasers theory and experiment,” IEEE J. Quantum Electron., vol. 35, no. 6, pp. 875–890, Jun. 1999.
    [33] S. Yang, E. A. Ponomarev, and X. Bao, “80 GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 300–302, Feb. 2005.
    [34] S. Yang and X. Bao, “Repetition-rate-multiplication in actively modelocking fiber laser by using phase modulated fiber loop mirror,” IEEE J. Quantum Electron., vol. 41, no. 10, pp. 1285–1292, Oct. 2005.
    [35] X. Wang, H. Yokoyama, and T. Shimizu, “Harmonic multiplication of mode-locking frequency by optical pulse train injection into a monolithic mode-locked laser diode,” in CLEO/Pac@r Rim ’95 Proc., 1995, vol. N 2 .
    [36]D. J . Kuizenga and A. E. Siegman, “PM mode-locking of the homogeneous laser-Part 1: Theory,” IEEE J . Quantum Electron.vol. 6, pp. 694-708. 1970.
    [37] M. S. Demokan, “A model of a diode laser actively mode-locked by
    gain modulation,” Int. J. Electron., vol. 60, pp. 67-80, 1986. 181 A. J. Lowery and 1. W. Marshall, “Stabilization of mode-locked pulses using a travelling-wave semiconductor laser amplifier,” Efectron. Lett., vol. 26, pp. 104-106, 1990.
    [38] A. D. Ellis, K. Smith, and D. M. Patrick, “All optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett., vol. 29, pp. 1323–1324, 1993.
    [39] P. T. Ho, “Phase and amplitude fluctuations in a mode-locked laser,”
    IEEE J. Quantum Electron., vol. QE-21, pp. 1806–1813, 1985.
    [40]J. M. Wiesenfeld, M. Kuznetsov, and A. S. Hou, “Tunable, pico-second pulse generation using a compressed, model locked laser source,” IEEE Photon. Technol. Lett., vol. 2, no. 5, pp. 319–321, May 1990.
    [41] S. Arahira, H. Yaegashi, K. Nakamura, and Y. Ogawa, “Broad-band wavelength tuning of 40-GHz actively mode-locked laser diode with external CWlight injection,” in Conf. Dig., 2004 IEEE 19th Int. Semiconductor Laser Conf., paper ThP10, Matsue, Shimane, Japan, 2004.
    [42] M. Born and E. Wolf, Principles of Optics. Oxford, England: Pergamon . 1975.
    [43] W. Swindell, Polarized Light.. Stroudsburg, PA: Dowden, Hutchinson and Ross, 1975, distributed by Halsted Press.
    [44] R. Calvani et al.,“Polarization phase-shift keying: a coherent transmission technique with differential heterodyne detection,”Electron. Lett., vol. 24, no. 10. pp. 642-643, May 12, 1988.
    [45] E. Dietrich et al., “Heterodyne transmission of a 560 Mbit/s optical within the integral, we obtain signal by means of polarization shift keying, “Electron. Lett., vol. 23,
    [46] C. D. Poole et al., “Phenomenological approach to polarization dispersion in long single-mode fibres, ¨ Electron. Lett., vol. 22, no. 19, pp. 1029-1030, Sept. 11, 1986.
    [47] L. J. Cimini et al., “Preservation of polarization orthogonality through a linear optical system,¨ Electron. Lett., vol. 23, no. 23, pp. 1365-1366, Dec. 3, 1987.
    [48] C. D. Poole et al., “Polarization dispersion and principal states is a 147-km undersea lightwave cable, ¨ J.. Lightwave Technol., vol. 6, pp. 1185-1190, July 1988.
    [49] E. Dietrich et al., “Heterodyne transmission of a 560 Mbit/s optical within the integral, we obtain signal by means of polarization shift keying, “Electron. Lett., vol. 23, no. 8, pp. 421-422, Apr. 9. 1987.
    [50] S. Betti et al., “State of polarization and phase noise independent coherent optical transmission system based on Stokes parameter detection,”Electron. Lett., vol. 24, no. 23, pp. 146-462, Nov. 10, 1988.
    [51] S. Beth et al., ‘”Phase-noise and polarization slate insensitive optical coherent systems: A general approach,¨ EEOC/LAN 1989, Amsterdam, The Netherlands, June 12-16, 1989.
    [52] G.J. Foschini, L.J. Greenstein, and G. Vannucci, “Noncoherent detection of coherent lighlwave signals corrupted by phase noise, ¨ IEEE Trans. Commus., vol. 36, pp. 306-314, Mar. 1988.
    [53] G. Jacobsen and I. Garrett, “Theory for heterodyne optical ASK receivers using square-law detection and postdetection filtering,¨ lEE Proc., vol. 134. Pt. J, no. 5. pp. 303-312, Oct. 1987.
    [54] K. Emura et al., “System design and long-span transmission experiments on an optical FSK heterodyne single filter detection system, ¨ J. Lightwave Technol, vol. LT-5, pp. 469-477, Apr. 1987.
    [55] Y. H. Chen and T. Okoshi, “Phase-noise-cancelling dual-frequency heterodync optical fibre communication system, ¨ Electron. Lett., vol. 25. pp. 835-836, June 1989.
    [56] T. L. Grettenberg, “A representation theorem for complex normal processes, ¨ IEEE Trans. Inform. Theory. pp. 305-306, Apr. 1965
    [57] K. S. Miller. Complex Stochastic Processes: An Introduction to Theory and Application. New York: Addison-Wesley, 1974.
    [58] G. Jacobsen and I. Garrett, “Theory for optical heterodyne DPSK receivers with post-detection filtering,¨ J. Lightwave Technol, vol. LT-5. Apr. 1987.
    [59] A.W. Davis et al, “Phase diversity techniques for coherent optical receivers, ¨ J. Lightwave Technol vol. LT-5, pp. 561-572, Apr. 1987.
    [60] S. Benedetto et al, Digital Transmission Theory. Englewood Cliffs, NJ: Prentice-Hall, 1987.
    [61] T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications. Tokyo, Japan: KTK Scientific, 1988.
    [62] H. Goldstein, Classical Mechanics. Reading, MA: Addison-Wesley. 1969,
    [22] J.G. Proakis, Digital Communications. New York: McGraw-Hill, 1983.
    [63] N. A. F. Jaeger, J. D. Bull, H. Kato, P. Lu, A. Kulpa, S. Ristic, P. Ghanipour, “Ultrahigh-Speed, Compound Semiconductor Mode-Converters,” OPTO-Canada, Ottawa, Ontario, May 9-10, 2002.
    [64] F. Rahmatian, N. A. F. Jaeger, R. James, and E. Berolo, “An Ultra-High-Speed AlGaAs/GaAs Polarization Converter Using Slow-Wave Coplanar Electrodes,” IEEE Photonics Technology Letters, vol. 10, no. 5, pp. 675-677, May 1998.

    QR CODE