研究生: |
張士強 Chang, Shih-Chiang |
---|---|
論文名稱: |
環境與生活產品中常見環境荷爾蒙之分析技術研究 Research for Analytical Techniques of Common Environmental Hormones in the Environment and Commodities |
指導教授: |
吳家誠
Wu, Jia-Cheng |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 159 |
中文關鍵詞: | 環境荷爾蒙 、內分泌干擾物 、塑化劑 、鄰苯二甲酸酯 、三氯沙 、壬基酚 、攪拌子萃取 |
英文關鍵詞: | environmental hormone, endocrine disrupting chemical, plasticizer, phthalate ester, triclosan, nonylphenol, stir bar sorptive extraction |
DOI URL: | https://doi.org/10.6345/NTNU202204858 |
論文種類: | 學術論文 |
相關次數: | 點閱:129 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「環境荷爾蒙」一詞是指外因性干擾生物體內分泌的化學物質,這一類物質可能模仿生物體內的天然荷爾蒙,與荷爾蒙的受體結合,影響體內荷爾蒙含量的增減,或直接刺激、抑制內分泌系統,使內分泌系統失調,進而阻礙生殖、發育等機能,甚至有引發惡性腫瘤與生物絕種的危害。例如常用的鄰苯二甲酸酯類 (phthalate esters) 塑化劑,其中數種已被世界各國如:日本、美國、歐盟列為疑似環境荷爾蒙物質,甚而禁用。然因石化業的發展、原油的煉製,使用在人類生活環境中的塑膠品多含有塑化劑成分,在廣泛的使用下,非常容易流佈於環境中,經由空氣吸入或食入或接觸而危害我們的身體健康。台灣在2011年也曾經爆發過食品中塑化劑事件,此一議題也重重傷害我國民眾的健康與國際形象。本研究主要針對常見的鄰苯二甲酸酯、三氯沙 (triclosan)、壬基酚 (4-n-nonylphenol)等環境(或疑似)荷爾蒙之化學污染物進行研究。研究中針對環境中各種基質:土壤、水質、日常生活產品進行檢測方法的技術性研究,以發展後的技術來了解各種環境中存在的狀況。
研究中之攪拌子萃取(stir bar sorptive extraction)技術是由改善固相微萃取技術所衍生而來,其特點為:使用更少的樣品需求量與少量的溶劑來達成微量分析之目的,本研究發展分析技術於生活產品等多樣基質中的環境荷爾蒙檢測,結果顯示對於各種日用品等基質,如:牙膏、清潔劑、肥皂等皆得到良好的方法適用性,在使用HPLC-DAD偵測下,方法檢測極限亦可達如質譜分析之ppb等級(1.2 (DBP) to 90.8 (DEHP) ng/mL)。此技術非常適合綠色、簡單、快速等環境友善的檢測方法發展,也預期可將其材料應用於分散式微量固相萃取(dispersive SPE)或QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe)樣品前處理技術上。
人類最常接觸環境荷爾蒙的方式為間接食入受污染的食物,例如存在於食物保鮮膜中的鄰苯二甲酸塑化劑,雖然近年來的產品皆標榜無塑毒的使用,但本研究發展以高靈敏GC-MS的技術檢測下,達10種鄰苯二甲酸酯的目標物在多達22種樣品中皆有被微量檢出,且亦發現目標物之外的塑化劑使用,顯示人類無時不刻暴露在高風險的環境下。
塑化劑的大量使用,最後有大部分是累積於環境土壤中,本研究中以次臨界水(subcritical water)在250℃、100 bar條件下來處理受鄰苯二甲酸酯污染的土壤,此條件下萃取處理的效率最高可達到80~90%以上:顯示對土壤中的鄰苯二甲酸酯污染具有良好的移除率。此外,次臨界水對部分鄰苯二甲酸酯具有分解作用,其後續效益值得深入探討。
本研究中所發展檢測的技術涵蓋了人類環境中各種可能接觸的樣品基質,從環境中的水、土壤到日常用品與食物接觸用品,很遺憾的是各種不同來源的樣品種類皆發現我們所欲檢測的環境荷爾蒙目標物,一來顯示研究中所發展檢測技術的適用性,二來也顯示化學品與環境污染物深入我們日常生活的嚴重性,現今的地球環境已是無處不化學、無處不污染的狀態。在研究結果呈現的同時,我們也希望藉由研究結果的展現能將檢測技術更為精進,朝向更環保的方式來發展,也可達到符合現代生活科學實用、應用所需的檢驗範疇。
"Environmental hormone" refers to exogenous chemicals that interfere with endocrine organism. These chemicals may mimic native hormones and bind with hormone receptor. The impact is to change the content of hormones or direct stimulation, inhibition of the endocrine system, endocrine system disorders, thereby impeding the reproductive, developmental and other functions, even extinctions caused by cancer and harm. For example, some of commonly used plasticizer phthalate esters (PAEs), which have been restricted around the world such as: Japan, the United States, and the European Union as suspected endocrine disrupting substances. Due to the development of its petrochemical industry and oil refining, they may be easily transferred to human bodies through inhalation or ingestion. In 2011, Taiwan has an outbreak of food plasticizer event which causes the harm for numerous people health and international attentions. In this research, phthalates, triclosan (TCS), and 4-nonylphenol (4-n-NP) have been detected in various matrices such as soil, water, daily life products by using our developed analytical schemes.
The technique, stir bar sorptive extraction (SBSE), is the approach of solid phase micro-extraction (SPME). This approach uses less solvent and sample amount to achieve the goal of greener, simpler, and environmental friendly of analytical method. The targeted analytes could be rapidly determined with limits of quantification (LOQs) ranging from 1.2 (DBP) to 90.8 (DEHP) ng/mL in real samples such as bottled waters, personal care products, soaps, lotions, and urine. The developed analytical scheme is solvent-saving, efficient, and capable of fast screening samples for these common endocrine disrupting chemicals (EDCs). In the further, we hope it can be expectedly utilized for the material approach in the methods of dispersive SPE) or QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe).
The most common way of human exposure to environmental hormones is indirect ingestion of contaminated food. Although the new age types of product announced that there were non-toxic plasticizers inside, our research results indicate that up to 10 different plasticizers were detected in 22 samples even in non-PVC food wraps through the developed GC-MS method. We even discovered the non-targeted plasticizers present in the certain samples.
We used subcritical water with the conditions of 250℃、100 bar to treat the PAE-contaminated soils for the remediation process. Accelerated solvent extraction (ASE) coupled with HPLC-UV were utilized for the evaluation of removal efficiencies. The results indicated removal efficiency ranges of 80–90% for PAEs spiked in soil samples.
In this research, most common matrices such as waters, soils, and life products were selected to be samples for the development of analytical method. Unfortunately, some of targeted environmental hormones were presented in different sample sources, which showed that the developed analytical schemes were suitable and permanent for those various samples. Nowadays, there are contaminates and chemicals around our surrounding, we hope the development of analytical scheme can be more precise, greener for the applications of life science.
1. 陳永仁 ”環境荷爾蒙管制”,財團法人孫運璿學術基金會獎助,2001。
2. 鄭顯榮、陳志銘、黃明輝 ”內分泌干擾物質(環境荷爾蒙)及持久性有機污染物之環保管制情形”,第一屆環境荷爾蒙與持久性有機污染物研討會,2000, 12-29。
3. 小泉睦子、長谷川隆一 “Endocrine Disrupting Action of Environmental Chemicals on Mammals”, Nihon Yukagakkaishi, 1999, 48, 5, 431-437.
4. 酒井憲司 ”Studies on endocrine-disrupting chemicals in sewage treatment”, GesuisoKyolaishi, 1999, 36, 445, 34-38.
5. K. R. Cooper “Impacts of Endocrine Compounds on Reproductive Success at the Population Level”, 第一屆環境荷爾蒙與持久性有機污染物研討會,2000, 1-2.
6. “What Are Endocrine Disruptors?” http://www.epa.gov/scipoly/oscpendo/pubs/edspoverview/whatare.htm
7. Ming-Tsang Wu, Chia-Fang Wu, Jiunn-Ren Wu, Bai-Hsiun Chen, Eric K. Chene, Mei-Chyn Chao, Ching-Kuan Liu, Chi-Kung Ho “The public health threat of phthalate-tainted foodstuffs in Taiwan: The policies the government implemented and the lessons we learned", Environment International, Volume 44, 2012, 75–79.
8. Gordon C.C. Yang, Chia-Heng Yen, Chih-Lung Wang “Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan”, Journal of Hazardous Materials, Volume 277, 2014, 53-61.
9. Susana Lin, Hsiu-Ying Ku, Pen-Hua Su, Jein-Wen Chen, Po-Chin Huang, Jürgen Angerer, Shu-Li Wang, “Phthalate exposure in pregnant women and their children in central Taiwan”, Chemosphere, Volume 82, 2011, 947-955.
10. Chung-Yu Chen, Yen-Yin Chou, Shio-Jean Lin, Ching-Chang Lee “Developing an intervention strategy to reduce phthalate exposure in Taiwanese girls”, Science of The Total Environment, Volume 517, 2015, 125-131.
11. Matt S. Chang, Jermiah Y. Shen, Sheng-Hsiung Yang, Gaston J. Wu “Subcritical water extraction for the remediation of phthalate ester-contaminated soil”, Journal of Hazardous Materials, Volume 192, , 2011, 1203-1209.
12. Endocrine Disruptor Screening Program (EDSP) http://www.epa.gov/endo/pubs/prioritysetting/finallist.html
13. 行政院環保署環境荷爾蒙管理計畫專區http://w5.camec.com.tw/epa33/?page_id=19
14. Strategic Programs on Environmental Endocrine Disruptors '98 (SPEED '98) http://www.env.go.jp/en/chemi/ed/speed98/sp98.html
15. Candidate List of substances of very high concern for Authorisationhttp://echa.europa.eu/regulations/reach/authorisation/the-candidate-list
16. Listing of POPs in the Stockholm Convention http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx
17. TEDX List of Potential Endocrine Disruptors http://endocrinedisruption.org/endocrine-disruption/tedx-list-of-potential-endocrine-disruptors/overview
18. Jeong-Hun Kang, Fusao Kondo, Yoshiki Katayama “Human exposure to bisphenol A”, Review Article Toxicology, Volume 226, , 2006, 79-89.
19. Russell A.D. "Whither triclosan?", J. Antimicrob. Chemother. 53 (5): 2004, 693–5.
20. Tai-Long Pan, Pei-Wen Wang, Ibrahim A. Aljuffali, Yi-Yun Hung, Chwan-Fwu Lin, Jia-You Fang "Dermal toxicity elicited by phthalates: Evaluation of skin absorption, immunohistology, and functional proteomics", Food and Chemical Toxicology, Volume 65, 2014, 105-114
21. Koch HM, Preuss R, Angerer J. “Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure - an update and latest results”, Int J Andrology, 2006: 29; 155-165
22. Tamie Nakajima, Nancy B. Hopf, Paul A. Schulte "Di(2-ethylhexyl) phthalate (DEHP) ", IARC Monographs Vol 77, 2000.
23. Geneva “Guidelines for drinking-water quality”, 2nd ed. Vol.2. Health criteria and other supporting information. World Health Organization, 1996.
24. 張碧芬、袁紹英 ”鄰苯二甲酸酯類環境荷爾蒙對生物的影響”,第31期。
25. C. A. Staples, and D. R. Peterson, Thomas F. Parkerton and William J. Adams ” The environmental fate of phthalate esters: A literature review ”, Chemosphere, 35, 1997, 667-749.
26. R. C. Scoott, P. H. Dugard, J. D. Ramsey and C. Rhodes ” In vitro absorption of some o-phthalate diesters through human and rat skin ”, Environ. Health Pers., 74, 1987, 223-227.
27. P. O. J. Sjoberg, U. G. Bonddesson, E. G. Sedin and J. P. Gustaison,” Exposure of newborn infants to plasticizers-plasms levels of di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate during exchange transfusion ”, Transfusion, 25(5), 1985, 424-428.
28. Russell AD "Whither triclosan?", J. Antimicrob. Chemother. 53 (5), 2004, 693–5.
29. http://www.epa.gov/oppsrrd1/REDs/factsheets/triclosan_fs.htm
30. Mei-Fei Yueh, Koji Taniguchi, Shujuan Chen, Ronald M. Evans, Bruce D. Hammock Michael Karin, Robert H. Tukey “The commonly used antimicrobial additive triclosan is a liver tumor promoter”, Proc. Natl. Acad. Sci. 2014.
31. Sicherer, Leung "Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects", J. Allergy. Clin. Immunol. 131 (1), 2012, 55–66.
32. Bhutani, Jacob "Triclosan", Dermatologic Surgery 35 (5), 2009, 888–9.
33. Bedoux, Roig, Thomas, Dupont, Le Bot "Occurrence and toxicity of antimicrobial triclosan and by-products in the environment", Environ. Sci. Pollut. Res. 19 (4), 2011, 1044–65.
34. Talia, Halden “Environmental Exposure of Aquatic and Terrestrial Biota to Triclosan and Triclocarban”, Journal of the American Water Resources Association , 45, 2009, 4–13.
35. Tixier C., Singer, H.P., Müller S.R. “Phototransformation of triclosan in surface water: A relevant elimination process for this widely used biocide – Laboratory studies, field measurements and modelling”, Environmental Science and Technology 36 (16), 2002, 3482-3489.
36. Soares, A., B. Guieysse, B. Jefferson, E. Cartmell, J. N. Lester. "Nonylphenol in the Environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters", Environment International 34.7, 2008, 1033-049.
37. 游呈祥、張碧芬、袁紹英 ” 值得注意的環境荷爾蒙-壬基苯酚環境分佈與調查初探”, 103-104 年度毒性化學物質環境流布背景調查計畫(第一年) 計畫成果摘要
38. J. C. Peterson, D. H. Freeman ”Variations of phthalate ester concentrations in sediments from the Chester river, Maryland ”, Intern. J. Environ. Anal. Chem., 18, 1984, 237-252.
39. P. Canosa, I. Rodrı´guez,* E. Rubı´, R. Cela “Determination of parabens and triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry”, Anal. Chem. 2007, 79, 1675-1681.
40. Jermiah Y. Shen, Matt S. Chang, Sheng-Hsiung Yang, Gaston J. Wu “Simultaneous and rapid determination of triclosan, triclocarban and their four related transformation products in water samples using SPME-HPLC-DAD”, J. Liq. Chromatogr. Related Technol., Volume 35, Issue 16, 2012, 2280-2293.
41. Jermiah Y. Shen, Matt S. Chang, Sheng-Hsiung Yang, Gaston J. Wu “Simultaneous determination of triclosan, triclocarban, and transformation products of triclocarban in aqueous samples using solid-phase micro-extraction-HPLC-MS/MS”, J. Sep. Sci., 2012, 1–9.
42. Weilin L. Shelver, Lisa M. Kamp,§ Jennifer L. Church, Fernando M. Rubio “Measurement of triclosan in water using a magnetic particle enzyme immunoassay”, J. Agric. Food Chem., 2007, 55, 3758-3763.
43. N. Salgueiro-Gonzáleza, I. Turnes-Caroua, S. Muniategui-Lorenzoa, P. López-Mahíaa, D. Prada-Rodrígueza “Membrane assisted solvent extraction coupled with liquid chromatography tandem mass spectrometry applied to the analysis of alkylphenols in water samples”, J. Chromatogr. A, 2013, 46–53.
44. Yumin Niua, Jing Zhanga, Yongning Wua, Bing Shao “Simultaneous determination of bisphenol A and alkylphenol in plant oil by gel permeation chromatography and isotopic dilution liquid chromatography–tandem mass spectrometry”, J. Chromatogr. A, 2011, 5248–5253.
45. Baltussen, E., P. Sandra, F. David, C. Cramers “Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles”, Journal of Microcolumn, Separations 11, 1999, 737–47.
46. 毛怡雯、詹彩鑾 “淺談食品塑膠包材可能發生之危害”, 食品工業, Volume 46, 2014, 44-45.
47. 陳倩雯,快速溶劑萃取系統與高效率液相層析介面在分析土壤中多苯環芳香烴化合物之方法研究,國立台灣師範大學研究所碩士論文,1999,吳家誠教授指導。
48. B. E Richer, J. L. Ezzell, K. A. Roberts, D. W Later ” An accelerated solvent extraction system for the rapid preparation of environment organic compounds in soil ”, Am. Lab., 27, 1995, 24-28.
49. 陳揖遜,以超臨界流體萃取/同位素稀釋質譜進行土壤中的多苯環芳香烴化合物分析,國立台灣師範大學化學研究所碩士論文,吳家誠教授指導,1996。
50. B. E. Richer,” B. A Jones.; J. L. Ezzell, N. L. Poter ” Accelerated solvent extraction: A technique for sample preparation ”, Anal. Chem., 68, 1996, 1033-1039.
51. T. Sekine, Y. Hassegawa “Solvent extraction chemistry”, Marcel Dekker: New York, 1997.
52. G. C. Pimentel, A. L. McClellan “The Hydrogen Bond ”, Freeman: San Francisco, 1960.
53. X. Lou, H-G. Janssen, C. A. Cramers ”Parameters affecting the accelerated solvent extraction of polymeric samples”, Anal. Chem., 69, 1997, 1598-1603.
54. N. Saim, J. R. Dean, Md. P. Abdullaah, Zakaria “An experimental design approach for the determination of polycyclic aromatic hydrocarbons from highly contaminated soil using accelerated solvent extraction”, Anal. Chem., 70, 1998, 420-424.
55. O. P. Heemken, N. Theobald, B. W. Wenclawiak “Comparison of ASE and SFE with Soxhlet, sonication and methanolic saponification extractions for the determination of organic micropollutants in marine particulate matter ”, Anal. Chem., 69, 1997, 2171 -2180.
56. D. J. Miller, S. B. Hawthorne ”Method for determining the solubilities of hydrophobic organics in subcritical water”, Anal. Chem., 70, 1998, 1618-1621.
57. Handbook of chemistry and physics, 69th ED., CRC Press, Inc., E56 (1988)
58. M. Curren, J. W. King “Solubility of Triazine pesticides in pure and modified subcritical water“, Anal. Chem., 73, 2001, 740-745.
59. S. B. Hawthorne, C. B. Grabanski, K. J. Hageman, D. J. Miller “ Simple method for polychlorinated biphenyl concentractions on soils and sediments using subcritical water extraction coupled with solid-phase microextraction ”, J. Chromatogr. A, 814, 1998, 151-160.
60. K. J. Hageman, L. Mazeas, C. B. Grabanski, D. J. Miller, S. B. Hawthorne “ Coupled subcritical water extraction with solid-phase microextraction for determining semivolatile organics in environmental solids “, Anal. Chem., 68, 1996, 3892-3898.
61. R. M. Smith, R. J. Burgess “Superheated water as an eluent for reversed-phase high-performance liquid chromatography”, J. Chrom- atogr. A, 785, 1997, 49-55.
62. Mohammad Nazrul Islama, Ho-Young Jungb, Jeong-Hun Park “Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals”, J. Environ. Manage., Volume 163, 2015, 262-269.
63. Hakim Faraji1, Syed Waqif Husain, Masoumeh Helalizadeh “β-Cyclodextrin-bonded silica particles as novel sorbent for stir bar sorptive extraction of phenolic compounds”, J. Chromatogr. Sci., Vol. 49, 2011, 482-487.
64. C. Yu, Z. Yao, B. Hu “Preparation of polydimethylsiloxane/ β-cyclodextrin/divinylbenzene coated “dumbbell-shaped” stir bar and its application to the analysis of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles compounds in lake water and soil by high performance liquid chromatography”, Anal. Chim. Acta, 641 , 2009, 75-82.
65. C. Yu, B. Hu “Sol–gel polydimethylsiloxane/poly(vinylalcohol)-coated stir bar sorptive extraction of organophosphorus pesticides in honey and their determination by large volume injection GC”, J. Sep. Sci., 32, 2009, 147-153.
66. X. Huang, D.X. Yuan “Preparation of stir bars for sorptive extraction based on monolithic material”, J. Chromatogr. A, 1154, 2007, 152-157.
67. X. Huang, D. Yuan, B. Huang “Determination of steroid sex hormones in urine matrix by stir bar sorptive extraction based on monolithic material and liquid chromatography with diode array detection”, Talanta, 75, 2008, 172-177.
68. X. Huang, N. Qiu, D. Yuan “Direct enrichment of phenols in lake and sea water by stir bar sorptive extraction based on poly (vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis”, J. Chromatogr. A, 1194, 2008, 134-138.
69. F. Schenck, J. Hobbs "Evaluation of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) approach to pesticide residue analysis". Bulletin of Environmental Contamination and Toxicology, 73, 2004, 24–30.
70. 中華民國衛生福利部公佈 ”食品化學檢驗方法之確效規範”, 第二次修正,2015。
71. 行政院衛生署食品藥物管理局 ”實驗室品質管理規範-化學領域測試結果之品質管制”, 第四次修訂, 2013。
72. 馬根善,”第一部分/自然水體之錯化包容力研究;第二部分/程式化流洗式線上管柱前濃縮高速液層析法對微量鄰苯二甲酸酯類之測定研究,國立臺灣師範大學化學研究所碩士論文,吳家誠教授指導,1990。
73. 邱燕萍,”快速溶劑萃取系統介面高效率液相層析儀在分析土壤中鄰苯二甲酸酯之方法研究”,國立臺灣師範大學化學研究所碩士論文,吳家誠教授指導,2000。
74. P. Krammer, H. Vogel ”Hydrolysis of esters in subcritical and super- critical water“, J. Supercritical fluids, 16, 2000, 189-206.
75. R. Holiday, B. John, J. Kolis “Organic synthesis in subcritical water oxidation of alkyl aromatics“, J. Supercritical fluids, 12, 1998, 255-260.
76. H. Tagaya, K. Katoh, J. Kadokawa, K. Chiba “Decomposition of polycarbonate in subcritical and supercritical water“, Polymer Degradation and Stability, 64, 1999, 289-292.
77. Xueling Wu, Yangyang Wanga, Renxing Lianga, Qinyun Daia, Decai Jina, Weiliang Chao “Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Agrobacterium sp. and the biochemical pathway”, Process Biochemistry, 46, 2011, 1090–1094.
78. Jun Wang, Man-Yun Zhang, Ting Chen, Ye Zhua, Ying Teng, Yong-Ming Luo “Isolation and Identification of a Di-(2-Ethylhexyl) Phthalate-Degrading Bacterium and Its Role in the Bioremediation of a Contaminated Soil”, Pedosphere, 25, 2015, 202–211.
79. Yi Lu, Fei Tang, Ying Wang, Jinhui Zhao, Xin Zeng, Qifang Luo, Lin Wang “Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge”, J. Hazard. Mater. , 168, 2009, 938–943.
80. Wenchao Liao , Tong Zheng, Peng Wang, , Sisi Tu, Weiqian Pan “Efficient microwave-assisted photocatalytic degradation of endocrine disruptor dimethyl phthalate over composite catalyst ZrOx/ZnO”, J. Environ. Sci., 22, 2010, 1800–1806.
81. Wenjun Jiang, Jeffrey A. Joens, Dionysios D. Dionysiou, Kevin E. O'Shea “Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate”, J. Photochem. Photobiol., A, 262, 2013, 7–13.