簡易檢索 / 詳目顯示

研究生: 王俊祺
Wang, Chun-Chi
論文名稱: 光激發極化銣原子磁共振現象之研究
Study on the Magnetic Resonance Phenomenon of Photoexcited Polarized Rubidium Atoms
指導教授: 廖書賢
Liao, Shu-Hsien
口試委員: 廖書賢
Liao, Shu-Hsien
陳坤麟
Chen, Kun-Lin
王立民
Wang, Li-Min
口試日期: 2024/07/23
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 45
中文關鍵詞: 光磁共振鹼金屬極化
英文關鍵詞: Optical magnetic resonance, Alkali metal polarization
研究方法: 現象分析
DOI URL: http://doi.org/10.6345/NTNU202401416
論文種類: 學術論文
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 摘要 ii 目錄 iii 圖目錄 v 第一章 序論與文獻回顧 1 1.1 研究動機 1 1.2 研究目的 2 1.3 光學感測磁共振技術(Optically Detected Magnetic Resonance, ODMR)發展與歷史 3 1.4 光激發磁量儀(Optical Pumping Magnetometer, OPM)進程發展 4 第二章 基本原理回顧 5 2.1銣原子特徵分析 5 2.1.1 銣原子特性與結構分析 5 2.1.2 銣原子在磁場背景中的交互作用 6 2.2光學激發感測銣原子共振特性 9 2.2.1 光學激發(Optical Pumping)與光致發光(Photoluminescence) 9 2.2.2 光學感測銣原子之磁共振特性 13 2.3 光激發磁量儀工作原理探討 15 第三章 實驗方法與系統 19 3.1實驗系統架設與介紹 19 3.3加熱系統 23 第四章 結果與分析 24 4.1實驗系統與架構分析 24 4.1.1 磁場特性分析 24 4.1.2 溫控系統分析 27 4.1.3 系統光源分析 28 4.2實驗方法與數據分析 31 4.2.1銣原子光學特性分析 31 4.2.2銣原子光磁共振探討 39 第五章 結論與未來展望 42 參考文獻 43

    [1] Fernandez, A., Hornero, R., Gomez, C., Turrero, A., Gil-Gregorio, P., Matías-Santos, J., & Ortiz, T. (2010). Complexity analysis of spontaneous brain activity in Alzheimer disease and mild cognitive impairment: an MEG study. Alzheimer Disease & Associated Disorders, 24(2), 182-189.
    [2] Pedersen, M., Abbott, D. F., & Jackson, G. D. (2022). Wearable OPM-MEG: A changing landscape for epilepsy. Epilepsia, 63(11), 2745-2753. doi:10.1111/epi.17368
    [3] Kähkönen, S., Yamashita, H., Rytsälä, H., Suominen, K., Ahveninen, J., & Isometsä, E. (2007). Dysfunction in early auditory processing in major depressive disorder revealed by combined MEG and EEG. Journal of Psychiatry and Neuroscience, 32(5), 316-322.
    [4] Park, J. W., Hill, P. M., Chung, N., Hugenholtz, P. G., & Jung, F. (2005). Magnetocardiography predicts coronary artery disease in patients with acute chest pain. Annals of noninvasive electrocardiology, 10(3), 312-323.
    [5] Marquetand, J., Middelmann, T., Dax, J., Baek, S., Sometti, D., Grimm, A., . . . Siegel, M. (2021). Optically pumped magnetometers reveal fasciculations non-invasively. Clinical Neurophysiology, 132(10), 2681-2684.
    [6] Marhl, U., Jodko-Władzińska, A., Brühl, R., Sander, T., & Jazbinšek, V. (2022). Transforming and comparing data between standard SQUID and OPM-MEG systems. Plos one, 17(1), e0262669.
    [7] Kastler, A. (1954). Les méthodes optiques d'orientation atomique et leurs applications. Proceedings of the Physical Society. Section A, 67(10), 853.
    [8] Hawkins, W. B. (1955). Orientation and alignment of sodium atoms by means of polarized resonance radiation. Physical Review, 98(2), 478.
    [9] Bell, W. E., & Bloom, A. L. (1957). Optical detection of magnetic resonance in alkali metal vapor. Physical Review, 107(6), 1559.
    [10] Skillman, T., & Bender, P. (1958). Measurement of the earth's magnetic field with a rubidium vapor magnetometer. Journal of Geophysical Research, 63(3), 513-515.
    [11] Kwiram, A. L. (1967). Optical detection of paramagnetic resonance in phosphorescent triplet states. Chemical Physics Letters, 1(7), 272-275.
    [12] Kwiram, A., & Ross, J. (1982). Optical detection of magnetic resonance in biologically important molecules. Annual Review of Biophysics and Bioengineering, 11(1), 223-249.
    [13] Carbonera, D., Giacometti, G., Agostini, G., Angerhofer, A., & Aust, V. (1992). ODMR of carotenoid and chlorophyll triplets in CP43 and CP47 complexes of spinach. Chemical Physics Letters, 194(4-6), 275-281.
    [14] Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., . . . Bestmann, S. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555(7698), 657-661.
    [15] Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., . . . Sims, D. (2020). Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. NeuroImage, 219, 116995.
    [16] Xu, S., Yashchuk, V. V., Donaldson, M. H., Rochester, S. M., Budker, D., & Pines, A. (2006). Magnetic resonance imaging with an optical atomic magnetometer. Proceedings of the National Academy of Sciences, 103(34), 12668-12671.
    [17] Arimondo, E., Inguscio, M., & Violino, P. (1977). Experimental determinations of the hyperfine structure in the alkali atoms. Reviews of Modern Physics, 49(1), 31.
    [18] Nierenbero, W. (1957). The measurement of the nuclear spins and static moments of radioactive isotopes. Annual review of nuclear science, 7(1), 349-406.
    [19] Zeeman, P. (1897). XXXII. On the influence of magnetism on the nature of the light emitted by a substance. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(262), 226-239.
    [20] Jackson, D. A., & Kuhn, H. (1938). The hyperfine structure of the Zeeman components of the resonance lines of sodium. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 167(929), 205-216.
    [21] Vanier, J. (1989). Community and growth: Paulist Press.
    [22] Happer, W. (1972). Optical pumping. Reviews of Modern Physics, 44(2), 169.
    [23] Schneider, B. M. DESIGN OF OPTICALLY DETECTED MAGNETIC RESONANCE (ODMR) SPECTROMETER.
    [24] Polanyi, J., & Woodall, K. (1972). Mechanism of rotational relaxation. The Journal of Chemical Physics, 56(4), 1563-1572.
    [25] Kawabata, R., Fukuda, K., & Kandori, A. (2010). Optimized condition for buffer gas in optical-pumped magnetometer operated at room temperature. Japanese journal of applied physics, 49(8R), 082401.
    [26] Shi, R.-Y., & Wang, Y.-H. (2013). Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer. Chinese Physics B, 22(10), 100703.
    [27] 陳憶緣(2009)。極化銣原子之光磁共振特性研究
    [28] Bebb, H. B., & Williams, E. (1972). Photoluminescence I: theory. In Semiconductors and semimetals (Vol. 8, pp. 181-320): Elsevier.
    [29] Dehmelt, H. G. (1956). Paramagnetic resonance reorientation of atoms and ions aligned by electron impact. Physical Review, 103(4), 1125.
    [30] Bison,G.(2005).Optimization and performance of an optical cardio-magnetometer. Journal of the Optical Society of America B, Vol. 22(No. 1).
    [31] Mikhailov, E. E., Novikova, I., Rostovtsev, Y. V., & Welch, G. R. (2004). Buffer-gas-induced absorption resonances inRbvapor. Physical Review A, 70(3). doi:10.1103/PhysRevA.70.033806
    [32] Hao-tian, C., Xu-lin, W., & Wei, Q. (2018). Pressure measurement of each gas in alkali-metal vapor cell with a mixed gas based on saturated absorption spectrum. Spectroscopy and Spectral Analysis, 38(3), 948-952.

    無法下載圖示 本全文未授權公開
    QR CODE