簡易檢索 / 詳目顯示

研究生: 楊士德
Yang, Shih-Te
論文名稱: 以大鼠模式探討青少年期輕度腦創傷造成精神異常之機轉
Study of Juvenile Mild Traumatic Brain Injury-Induced Psychiatric Disorders Using Rodent Model
指導教授: 呂國棟
Lu, Kwok-Tung
口試委員: 林豊益
Lin, Li-Yih
陳永恩
Chan, Michael Wing-Yan
楊奕玲
Yang, Yi- Ling
翁炳孫
Wung, Being-Sun
呂國棟
LU, Kwok-Tung
口試日期: 2022/01/17
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 110
中文關鍵詞: 青少年期腦創傷類憂鬱行為類焦慮行為杏仁核海馬迴前額葉皮質伏隔核腦源性神經滋養因子7,8-二羥基黃酮
英文關鍵詞: Juvenile, Mild traumatic brain injury, Depression-like behavior, Anxiety-like behavior, Amygdala, Hippocampus, Medial prefrontal cortex, Nucleus Accumbens, BDNF, 7,8-DHF
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200336
論文種類: 學術論文
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦創傷 (traumatic brain injury, TBI) 為全球創傷導致死亡和殘疾的主要原因,研究顯示全世界每年約有5000至6000萬人受到腦創傷的影響,據統計其中輕度腦創傷 (mild traumatic brain injury, mTBI ) 約佔75至90%,且因診斷差異以及只有少部分的傷患會去醫院接受醫療,所以普遍認為其數目被低估,然而mTBI的研究文獻數量,約只佔TBI全數研究的八分之一。並且mTBI患者在創傷後常併發注意力缺失 (attention deficit)、記憶受損 (memory impairment)與情緒障礙 (emotional disorders),如:憂鬱症(depression disorder) 、焦慮症 (anxiety disorder),與嚴重腦創傷相比,輕度腦創傷反而更容易引起焦慮症與憂鬱症,並且有報導指出在創傷恢復的五至十年後,還是可以觀察到認知(cognitive)以及情緒上(emotional)的影響。
    人類腦部灰質發育於七歲達到高峰,並透過生活經驗進行突觸修飾(synaptic modification)直至青少年期 (juvenile stage),然而部分腦區如:前額葉皮質(prefrontal cortex)、海馬體(hippocampus)和杏仁核(amygdala) 的突觸修飾甚至可持續至成年,而這些腦區均與憂鬱症和焦慮症有高度相關,足見青少年期的不良經驗,為成年期是否產生情緒障礙的關鍵因素。本研究利用動物模式,探討青少年期輕度腦創傷處理後 (juvenile mild TBI treatment, mTBI-J) 導致成年期情感異常之病理變化及神經機轉。
    研究中探討輕度腦創傷所產生的精神異常現象,主要針對憂鬱症以及焦慮症進行研究設計,探討腦創傷程度、行為變化、分子機轉之影響。研究由四個面向進行分析,實驗結果顯示,(一) 青少年期大鼠 (六週齡) 接受於mTBI-J 後24小時,使用氯化四唑染色 (triphenyl tetrazolium chloride stain, TTC stain) 與蘇木素-伊紅染色 (hematoxylin and eosin stain, HE stain) 觀察腦創傷程度,和控制組相比,mTBI-J組未發現明顯腦損傷,但有輕微腦水腫 (brain edema)。(二) 青少年期接受 mTBI-J 處理的大鼠,於成年後 (九週齡) 自發性運動行為偵測 (locomotor activity test, LAT) 之結果顯示自發性運動和運動功能相對於控制組並沒有明顯改變;類憂鬱行為明顯增加,糖水之攝取量 (amount of sucrose intake) 明顯較低,且不掙扎時間百分比 (percent time of immobility) 明顯變少;類焦慮行為相對於控制組沒有明顯變化,在恐懼所促進的驚跳反應(fear-potentiated startle, FPS) 結果顯示,mTBI-J組的基礎驚跳反應 (basal startle) 明顯增加,但促進的驚跳反應百分比 (percent potentiated startle) 則無顯著變化,合併開放空間實驗 (open field test, OFT) 觀察進出中央次數與高架十字迷宮(elevated plus maze, EPM) 觀察開放臂與封閉臂的停留時間,推估mTBI-J組的類焦慮行為無明顯改變,但在聲音誘發的驚跳反應 (acoustic startle response, ASR)顯著增加,代表 mTBI-J 的處理會增加基礎驚跳值。(三) qPCR 結果顯示,背側海馬迴 (dorsal hippocampus, dHip) 與、腹側海馬迴 (ventral hippocampus, vHip) 中腦源性神經生長因子 (brain-derived neurotrophic factor , BDNF) 表現量下降,但其受體 (tropomyosin receptor kinase B, TrkB) 的表現量卻沒有明顯變化。西方墨點結果顯示,vHip的TrkB表現量下降,此結果與先前觀察到的mTBI-J組類憂鬱行為增加相互契合,然dHip的TrkB 和BDNF表現量並無顯著差異,顯示 mTBI-J 的處理影響到腹側海馬迴的功能。此外杏仁核處磷酸化ERK2 (phosphorylated-extracellular signal-regulated kinase 2, P-ERK2) 之表現明顯下降,電生理結果顯示,杏仁核中高頻刺激誘導長期增強作用(high frequency stimulation induced long-term potentiation, HFS-LTP)明顯增強,而海馬迴中HFS-LTP無顯著變化。此結果與先前觀察到的基礎驚跳值增加,與ERK2的磷酸化改變,進而影響到杏仁核的神經神經傳遞功能之假設相互契合。 (四) 進行機轉驗證:透過投與TrkB之促進劑7,8-二羥基黃酮 (7,8-DHF),發現可以改善mTBI-J組的類憂鬱行為。
    本研究之結果顯示mTBI-J處理雖然沒有造成明顯運動功能與組織學損傷,卻會增加成年期的類憂鬱與基礎驚跳值上升,在mTBI-J所引起的類憂鬱行為中,腹側海馬迴的 BDNF 表現量在其中扮演關鍵腳色。而mTBI-J所引起的基礎驚跳值上升則影響到杏仁核的突觸傳遞,可嘗試使用降低神經興奮性藥物進行改善,可以提供相關治療藥物的開發提供所需的方向及基礎。

    Traumatic brain injury (TBI) is a significant cause of death and disability worldwide; population-based studies showed that 50–60 million people worldwide (including at least 3.5 million in the United States and 2.5 million in Europe) are affected by a new TBI each year. The great majority of cases (75–90%) are mild TBI (mTBI). Estimates of mTBI incidence often involve diagnostic and selection biases. It is widely acknowledged that incidence is underestimated because only a minor proportion of cases are admitted to hospitals. However, the number of studies in mTBI was only about one-eighth relative to the reported in TBI. mTBI patients are often complicated by attention deficit, memory impairment, and emotional disorders (depression and anxiety), interestingly mTBI is more likely to cause anxiety and depression than severe TBI, and cognitive and emotional effects have been reported five to ten years after mTBI recovery.
    The brain was increased in grey matter that peaks at around seven years of age in humans. The experience-dependent synaptic pruning occurs mainly during childhood and juvenile but can extend into adulthood in the prefrontal cortex, hippocampus, and amygdala. Therefore, the juvenile experience was a critical and sensitive stage for developing emotional disorders in adulthood. This study was used animal models to study the pathological changes and emotional abnormalities in adulthood after juvenile mild TBI treatment (mTBI-J). This study was aimed to investigate the long-term adverse effect of mTBI-J treatment on behavior and its neural mechanism using animal models.
    The study was analyzed from four perspectives. The experimental results showed that (1) mTBI-J treated rats in 24 hours after the 2,3,5,-triphenyltetrazolium chloride monohydrate stain (TTC stain) and hematoxylin and eosin stain (HE stain) were used to observe the degree of brain injury. Compared with the control group, no apparent neural damage was found in the mTBI-J group, but slight brain edema occurred in mTBI-J treated animals. (2) The results of locomotor activity test (LAT) in adult stage rats (nine-week-old) with mTBI-J treated showed the spontaneous motor activity and motor function was not significantly different compared with the control group; The depression-like behavior was significantly increased compared with the control group, the amount of sucrose intake and the percentage time of immobility were significantly reduced; In the fear-potentiated startle (FPS) test, that results revealed an increase in the basal startle response, but not percent potentiated startle, and the extinction of conditioned fear remains intact in the mTBI-J treated rats. In addition, there was no significant change in the mTBI-J group in the elevated plus maze (EPM) and the open field test (OFT) compared with the control group. Results were suggested that was not exhibited in anxiety-like behavior in the mTBI-J group, but there was a significant increase in acoustic startle response (ASR), indicating that mTBI-J processing increased basal startle response. (3) The qPCR results showed that the expression of brain-derived neurotrophic factor (BDNF) decreased in the dorsal hippocampus (dHip) and ventral hippocampus (vHip). However, the expression of the BDNF receptor (tropomyosin receptor kinase B, TrkB) did not change significantly compared with the control group. The western blotting results showed a decrease in the expression of BDNF in vHip, which is consistent with the previously observed increase in depression-like behavior in the mTBI-J group. In addition, the expression of phosphorylated-extracellular signal-regulated kinase 2, P-ERK2 in the amygdala was significantly decreased. Brain slice extracellular recording results showed that HFS-LTP in the amygdala was significantly enhanced, and there was no significant change in HFS-LTP in the hippocampus. . This result is consistent with previous observations that increased basal startle value and altered phosphorylated P-ERK2 affect neuroplasticity in the amygdala. (4) Verifying the mechanism through the BDNF analog, that mTBI-J treatment-induced depression-like behavior was lessened after the TrkB agonist (7,8-dihydroxyflavone hydrate, 7,8-DHF) administration.
    In summary, we successfully established the mTBI-J animal model to induce behavioral and neural abnormalities in adult and juvenile rats. These results indicate that even a mild juvenile TBI treatment that did not produce motor deficits or significant histological damage could have a long-term adverse effect that could be sustained to adulthood, which increases the depression-like behavior and enhances the basal and contextual startle responses in the adult age. The BDNF-TrkB pathway in the ventral hippocampus plays a critical role in mTBI-J induced depression-like behavior. The anxiety-like behavior induced by mTBI-J treated that showed an increase in HFS-LTP in the amygdaloid suggested that it could be improved with drugs that reduce nerve excitatory. This study could provide new insight for the mTBI-J induce mental illness treatments.

    TABLE OF CONTENTS i 摘要 v ABSTRACT ix CHAPTER 1: INTRODUCTION 1 1.1 Mild Traumatic Brain Injury in Juvenile 1 1.2 Mild Traumatic Brain Injury and Mental Illness 3 1.2.1 Mild Traumatic Brain Injury and Depression 5 1.2.2 Mild Traumatic Brain Injury and Anxiety 7 1.3 The Molecular Neurobiology of Depression and Anxiety 9 1.3.1 Brain-Derived Neurotrophic Factor (BDNF) and Tropomyosin Receptor Kinase B (TrkB) 9 1.3.2 Na+-K+-Cl- Co-transporter 1 (NKCC1) 9 1.3.3 Extracellular Signal-Regulated Kinase 1 and 2 (ERK1/2) 11 1.4 Aim and Significance 14 CHAPTER 2: MATERIALS AND METHODS 15 2.1 Animals 15 2.2 Juvenile Mild Traumatic Brain Injury Model 15 2.3 Brain Damage Measurement 16 2.3.1 2,3,5,-Triphenyltetrazolium Chloride Monohydrate Stain (TTC stain) 16 2.3.2 Hematoxylin and Eosin Stain (HE stain) 17 2.3.3 Brain Edema 18 2.4 Spontaneous Mobility Tests 18 2.5 Depression-Like Behavioral Tests 18 2.5.1 Sucrose Preference Test (SPT) 19 2.5.2 Forced Swim Test (FST) 19 2.6 Anxiety-Like Behavioral Tests 20 2.6.1 Elevated Plus Maze Test (EPM) 20 2.6.2 Open Field Test (OFT) 20 2.6.3 Fear-Potentiated Startle Test (FPS) 21 2.6.4 Acoustic Startle Response Test (ASR) 23 2.7 Laboratory Tests 23 2.7.Real-Time Polymerase Chain Reaction 23 2.7.2 Western Blot 25 2.7.3 Brain Slice Extracellular Recording 25 2.8 Statistics 27 CHAPTER 3: RESULTS 29 3.1 Evaluating the mTBI-J Treated Animals Induced Brain Damage. 29 3.2 The mTBI-J Treated Animals Showed an Increase in Depression-like Behavior in Adulthood. 30 3.3 Determine the BDNF, TrkB, and NKCC1 Gene Expression in the Medial Prefrontal Cortex, Nucleus Accumbens, Dorsal Hippocampus, Ventral Hippocampus, and Amygdala of the mTBI-J Treated Animals. 31 3.4: The expression of BDNF in the Ventral Hippocampus is Decreased in the mTBI-J Treated Animals. 33 3.5 The 7,8-Dihydroxyflavone (7,8-DHF) can Reduce the mTBI-J Treatment-induced Depression-like Behavior. 35 3.7 Elevated Basal and Foot-Shock-Induced Startle Responses, but not Percent Potentiated Startle in mTBI-J Treated Animals. 38 3.8 The High-Frequency Stimulation-Induced Long-Term Potentiation in the Basolateral Nucleus of the Amygdala is Elevated in mTBI-J Treated Animals. 40 3.9 The Basal Startle Response was Increased in mTBI-J Treated Animals. 41 3.10 The mTBI-J Treated Animals Showed Reduction in Input-Output Curve in the Amygdala. 42 3.11 The Phosphorylation of ERK in the Amygdala was Decreased in mTBI-J Animals. 43 DISCUSSION 45 ABBREVIATION 66 FIGURES 68 REFERENCES 97

    REFERENCES
    Abdul-Muneer, P., Schuetz, H., Wang, F., et al. (2013). Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic. Biol. Med., 60, 282-291.
    Abdul-Muneer, P. M., Chandra, N., & Haorah, J. (2015). Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol, 51, 966-979.
    ACRM. (1993). Definition of mild traumatic brain injury. J. Head Trauma Rehabil., 8(3), 86–87.
    Agrawal, R., Noble, E., Tyagi, E., et al. (2015). Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta, 1852, 862-872.
    Albicini, M., & McKinlay, A. (2015). A systematic review of anxiety disorders following mild, moderate and severe TBI in children and adolescents. A fresh look at anxiety disorders, 199-224.
    Albicini, M., & McKinlay, A. (2018). Anxiety disorders in adults with childhood traumatic brain injury: Evidence of difficulties more than 10 years postinjury. J Head Trauma Rehabil, 33, 191-199.
    Almeida-Suhett, C. P., Prager, E. M., Pidoplichko, V., et al. (2014). Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS One, 9, e102627.
    Andero, R., Heldt, S. A., Ye, K., et al. (2011). Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am J Psychiatry, 168, 163-172.
    Andrade, P., Banuelos-Cabrera, I., Lapinlampi, N., et al. (2018). Acute non-convulsive status epilepticus after experimental traumatic brain injury in rats. J Neurotrauma.
    Anthonymuthu, T. S., Kenny, E. M., & Bayır, H. (2016). Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res, 1640, 57-76.
    Bailey, D. M., Brugniaux, J. V., Filipponi, T., et al. (2019). Exaggerated systemic oxidative‐inflammatory‐nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. J. Physiol., 597, 611-629.
    Baskaya, M. K., Dogan, A., Temiz, C., et al. (2000). Application of 2,3,5-triphenyltetrazolium chloride staining to evaluate injury volume after controlled cortical impact brain injury: role of brain edema in evolution of injury volume. J Neurotrauma, 17, 93-99.
    Bayer, S. A. (1982). Changes in the total number of dentate granule cells in juvenile and adult rats: a correlated volumetric and 3H-thymidine autoradiographic study. Exp Brain Res, 46, 315-323.
    Bayir, A., Kafali, M. E., Ak, A., et al. (2003). Effects of hypertonic saline, HAES and dimethylsulphoxide on free oxygen radicals in haemorrhagic shock oxygen radicals in haemorrhagic shock. Ulus Travma Acil Cerrahi Derg, 9, 154-159.
    Bederson, J. B., Pitts, L. H., Germano, S. M., et al. (1986). Evaluation of 2, 3, 5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke, 17, 1304-1308.
    Bewernick, B. H., Hurlemann, R., Matusch, A., et al. (2010). Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry, 67, 110-116.
    Biselli, T., Lange, S. S., Sablottny, L., et al. (2019). Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: A systematic review. Eur J Neurosci.
    Blakey, S. M., Wagner, H. R., Naylor, J., et al. (2018). Chronic pain, TBI, and PTSD in military veterans: a link to suicidal ideation and violent impulses? J Pain, 19, 797-806.
    Bodnar, C. N., Roberts, K. N., Higgins, E. K., et al. (2019). A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. J Neurotrauma, 36, 1683-1706.
    Boyle, L. M. (2013). A neuroplasticity hypothesis of chronic stress in the basolateral amygdala. Yale J Biol Med, 86, 117.
    Brahmachari, G. (2017). Discovery and development of neuroprotective agents from natural products. Elsevier.
    Brenner, L. A., Betthauser, L. M., Homaifar, B. Y., et al. (2011). Posttraumatic stress disorder, traumatic brain injury, and suicide attempt history among veterans receiving mental health services. Suicide Life Threat Behav, 41, 416-423.
    Brown, J. S., Kalish, H. I., & Farber, I. E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol, 41, 317-328.
    Bruns Jr, J., & Hauser, W. A. (2003). The epidemiology of traumatic brain injury: a review. Epilepsia, 44, 2-10.
    Bryant, R. (2011). Post-traumatic stress disorder vs traumatic brain injury. Dialogues Clin Neurosci, 13, 251-262.
    Bryant, R. A., O'Donnell, M. L., Creamer, M., et al. (2010). The psychiatric sequelae of traumatic injury. Am J Psychiatry, 167, 312-320.
    Calhoon, G. G., & Tye, K. M. (2015). Resolving the neural circuits of anxiety. Nat Neurosci, 18, 1394-1404.
    Carola, V., D'Olimpio, F., Brunamonti, E., et al. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res, 134, 49-57.
    Carola, V., Frazzetto, G., Pascucci, T., et al. (2008). Identifying molecular substrates in a mouse model of the serotonin transporter x environment risk factor for anxiety and depression. Biol Psychiatry, 63, 840-846.
    Cassidy, J. D., Carroll, L. J., Peloso, P. M., et al. (2004). Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med, 28-60.
    Çetin, A., & Deveci, E. (2019). Evaluation of PECAM-1 and p38 MAPK expressions in cerebellum tissue of rats treated with caffeic acid phenethyl ester: a biochemical and immunohistochemical study. Folia Morphol., 78, 221-229.
    Charney, D. S., & Manji, H. K. (2004). Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci STKE, 2004, re5.
    Cheng, P., Li, R., Schwebel, D. C., et al. (2020). Traumatic brain injury mortality among U.S. children and adolescents ages 0-19 years, 1999-2017. J Safety Res, 72, 93-100.
    Cheng, Z., Zhang, M., Ling, C., et al. (2019). Neuroprotective effects of ginsenosides against cerebral ischemia. Molecules, 24, 1102.
    Cherian, L., Hlatky, R., & Robertson, C. S. (2004). Nitric oxide in traumatic brain injury. Brain Pathol, 14, 195-201.
    Chi, H. T., Chiu, W. T., Yang, D. Y., et al. (2007). The epidemiology and utilization of medical resources on mild head injury in Taipei city. J Emerg. Crit Care Med, 18, 61-70.
    Chiu, W. T., Kuo, C. Y., Hung, C. C., et al. (2000). The effect of the Taiwan motorcycle helmet use law on head injuries. Am J Public Health, 90, 793-796.
    Cholvin, T., Loureiro, M., Cassel, R., et al. (2016). Dorsal hippocampus and medial prefrontal cortex each contribute to the retrieval of a recent spatial memory in rats. Brain Struct. Funct., 221, 91-102.
    Clément, T., Lee, J. B., Ichkova, A., et al. (2020). Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses. Glia, 68, 528-542.
    Coogan, A. N., O'Leary, D. M., & O'Connor, J. J. (1999). P42/44 MAP kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. J. Neurophysiol., 81, 103-110.
    Coronado, V. G., Haileyesus, T., Cheng, T. A., et al. (2015). Trends in sports-and recreation-related traumatic brain injuries treated in US emergency departments: the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) 2001-2012. J Head Trauma Rehabil, 30, 185-197.
    Coronado, V. G., Xu, L., Basavaraju, S. V., et al. (2011). Surveillance for traumatic brain injury-related deaths--United States, 1997-2007. MMWR Surveill Summ, 60, 1-32.
    David B. Arciniegas, M. D., Nathan D. Zasler, M.D., Rodney D. Vanderploeg, Ph.D., Michael S. Jaffee, M.D., T. Angelita Garcia, M.B.A. (2013). Management of adults with traumatic brain injury. American Psychiatric Pub.
    Davis, M. (1972). Differential retention of sensitization and habituation of the startle response in the rat. J Comp Physiol Psychol, 78, 260-267.
    Davis, M. (1992). The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci, 13, 35-41.
    de Carvalho, C. R., Lopes, M. W., Constantino, L. C., et al. (2021). The ERK phosphorylation levels in the amygdala predict anxiety symptoms in humans and MEK/ERK inhibition dissociates innate and learned defensive behaviors in rats. Mol. Psychiatry, 1-13.
    Dean, P. J. A., & Sterr, A. (2013). Long-term effects of mild traumatic brain injury on cognitive performance. Front. Hum. Neurosci., 7, 30.
    Delmonico, R. L., Theodore, B. R., Sandel, M. E., et al. (2021). Prevalence of depression and anxiety disorders following mild traumatic brain injury. Pm r.
    Delpire, E., Rauchman, M. I., Beier, D. R., et al. (1994). Molecular cloning and chromosome localization of a putative basolateral Na(+)-K(+)-2Cl- cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem, 269, 25677-25683.
    Di Cristo, G., Berardi, N., Cancedda, L., et al. (2001). Requirement of ERK activation for visual cortical plasticity. Science, 292, 2337-2340.
    Domingues, M., Casaril, A. M., Smaniotto, T. Â., et al. (2021). Selanylimidazopyridine abolishes inflammation-and stress-induced depressive-like behaviors by modulating the oxido-nitrosative system. Eur. J. Pharmacol., 174570.
    Dong, C., Wong, M. L., & Licinio, J. (2009). Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry, 14, 1105-1118.
    Duman, R. S. (2002). Synaptic plasticity and mood disorders. Mol Psychiatry, 7(1), S29-34.
    Duman, R. S., Deyama, S., & Fogaça, M. V. (2021). Role of BDNF in the pathophysiology and treatment of depression: Activity‐dependent effects distinguish rapid‐acting antidepressants. Eur. J. Neurosci., 53, 126-139.
    Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biol Psychiatry, 59, 1116-1127.
    Dunham, J. S., Deakin, J. F., Miyajima, F., et al. (2009). Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. J Psychiatr Res, 43, 1175-1184.
    Fuchikami, M., Thomas, A., Liu, R., et al. (2015). Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions. Proc Natl Acad Sci U S A, 112, 8106-8111.
    Gage, G. J., Kipke, D. R., & Shain, W. (2012). Whole animal perfusion fixation for rodents. J. Vis. Exp., 3564.
    Girgis, F., Pace, J., Sweet, J., et al. (2016). Hippocampal neurophysiologic changes after mild traumatic brain injury and potential neuromodulation treatment approaches. Front. Syst. Neurosci., 10, 8.
    Gooney, M., Messaoudi, E., Maher, F. O., et al. (2004). BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiol. Aging, 25, 1323-1331.
    Grundy, P. L., Harbuz, M. S., Jessop, D. S., et al. (2001). The hypothalamo-pituitary-adrenal axis response to experimental traumatic brain injury. J Neurotrauma, 18, 1373-1381.
    Gulyaeva, O. A., Bakirov, A. B., Chemikosova, T. S., et al. (2019). Dependence of dental status from the level of endogenous intoxication in chemical industry workers based on the oral fluid composition study. Stomatologiia (Sofiia), 98, 18-21.
    Guo, Y. J., Pan, W. W., Liu, S. B., et al. (2020). ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med., 19, 1997-2007.
    Haas, M., & Forbush, B., 3rd. (2000). The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol, 62, 515-534.
    Hare, B. D., & Duman, R. S. (2020). Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol. Psychiatry, 25, 2742-2758.
    Hartmann, M., Heumann, R., & Lessmann, V. (2001). Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J, 20, 5887-5897.
    Hehar, H., Yeates, K., Kolb, B., et al. (2015). Impulsivity and concussion in juvenile rats: examining molecular and structural aspects of the frontostriatal pathway. PLoS One, 10, e0139842.
    Henry, R. J., Meadows, V. E., Stoica, B. A., et al. (2020). Longitudinal assessment of sensorimotor function after controlled cortical impact in mice: comparison of beamwalk, rotarod, and automated gait analysis tests. J. Neurotrauma, 37, 2709-2717.
    Hoy, R., Nolen, T., & Brodfuehrer, P. (1989). The neuroethology of acoustic startle and escape in flying insects. J Exp Biol, 146, 287-306.
    Hsu, I. L., Li, C. Y., Chu, D. C., et al. (2018). An epidemiological analysis of head injuries in Taiwan. Int J Environ Res Public Health, 15.
    Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res, 163, 195-205.
    Jaggi, A. S., Kaur, A., Bali, A., et al. (2015). Expanding spectrum of sodium potassium chloride co-transporters in the pathophysiology of diseases. Curr Neuropharmacol, 13, 369-388.
    Jang, S. W., Liu, X., Yepes, M., et al. (2010). A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A, 107, 2687-2692.
    Jha, R. M., Kochanek, P. M., & Simard, J. M. (2019). Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology, 145, 230-246.
    Kane, M. J., Angoa-Perez, M., Briggs, D. I., et al. (2012). A mouse model of human repetitive mild traumatic brain injury. J Neurosci Methods, 203, 41-49.
    Kapp, B., Pascoe, J., & Bixler, M. (1984). The amygdala: A neuroanatomical systems approach to its contribution to aversive conditioning. The neuropsychology of memory, 473-488.
    Keep, R. F., Hua, Y., & Xi, G. (2012). Brain water content. A misunderstood measurement? Transl Stroke Res, 3, 263-265.
    Keller, J., Gomez, R., Williams, G., et al. (2017). HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry, 22, 527-536.
    Khellaf, A., Khan, D. Z., & Helmy, A. (2019). Recent advances in traumatic brain injury. J Neurol, 266, 2878-2889.
    Khodorov, B., Storozhevykh, T., Surin, A., et al. (2002). The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis. Neurosci. Behav. Physiol., 32, 541-547.
    Klein, R. C., Acheson, S. K., Qadri, L. H., et al. (2016). Opposing effects of traumatic brain injury on excitatory synaptic function in the lateral amygdala in the absence and presence of preinjury stress. J. Neurosci. Res., 94, 579-589.
    Ko, M. C., Hung, Y. H., Ho, P. Y., et al. (2014). Neonatal glucocorticoid treatment increased depression-like behaviour in adult rats. Int J Neuropsychopharmacol, 17, 1995-2004.
    Konrad, C., Geburek, A. J., Rist, F., et al. (2011). Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychological Medicine, 41, 1197-1211.
    Korley, F. K., Diaz-Arrastia, R., Wu, A. H., et al. (2016). Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury. J Neurotrauma, 33, 215-225.
    Korte, S. M., De Boer, S. F., & Bohus, B. (1999). Fear-potentiation in the elevated plus-maze test depends on stressor controllability and fear conditioning. Stress, 3, 27-40.
    Kuehn, B. (2019). Traumatic brain injuries among youth. JAMA, 321, 1559.
    Kuo, B. J., Vaca, S. D., Vissoci, J. R. N., et al. (2017). A prospective neurosurgical registry evaluating the clinical care of traumatic brain injury patients presenting to Mulago National Referral Hospital in Uganda. PLoS One, 12, e0182285.
    LeDoux, J. E., Cicchetti, P., Xagoraris, A., et al. (1990). The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci, 10, 1062-1069.
    Lee, A. R., Kim, J. H., Cho, E., et al. (2017). Dorsal and ventral hippocampus differentiate in functional pathways and differentially associate with neurological disease-related genes during postnatal development. Front Mol Neurosci, 10, 331.
    Lee, C.-W., Chen, Y.-J., Wu, H.-F., et al. (2019). Ketamine ameliorates severe traumatic event-induced antidepressant-resistant depression in a rat model through ERK activation. Prog. Neuropsychopharmacol. Biol. Psychiatry, 93, 102-113.
    Lefevre-Dognin, C., Cogné, M., Perdrieau, V., et al. (2021). Definition and epidemiology of mild traumatic brain injury. Neurochirurgie, 67, 218-221.
    Levin, H. S., Amparo, E., Eisenberg, H. M., et al. (1987). Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injuries. J Neurosurg, 66, 706-713.
    Li, Y., Zhang, L.-M., Zhang, D.-X., et al. (2020). CORM-3 ameliorates neurodegeneration in the amygdala and improves depression-and anxiety-like behavior in a rat model of combined traumatic brain injury and hemorrhagic shock. Neurochemistry international, 140, 104842.
    Li, Z., Bishop, N., Chan, S.-L., et al. (2018). Effect of TTC Treatment on immunohistochemical quantification of collagen IV in rat brains after stroke. Translational stroke research, 9, 499-505.
    Lipton, S. A., Choi, Y. B., Pan, Z. H., et al. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 364, 626-632.
    Liska, G. M., Lee, J. Y., Xu, K., et al. (2018). Suppressed acoustic startle response in traumatic brain injury masks post-traumatic stress disorder hyper-responsivity. Neuroreport, 29, 939-944.
    Lu, K. T., Cheng, N. C., Wu, C. Y., et al. (2008). NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med, 36, 917-922.
    Lu, K. T., Wang, Y. W., Wo, Y. Y., et al. (2005). Extracellular signal-regulated kinase-mediated IL-1-induced cortical neuron damage during traumatic brain injury. Neurosci Lett, 386, 40-45.
    Lu, K. T., Wang, Y. W., Yang, J. T., et al. (2005). Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma, 22, 885-895.
    Lu, K. T., Wu, C. Y., Cheng, N. C., et al. (2006). Inhibition of the Na+ -K+ -2Cl- -cotransporter in choroid plexus attenuates traumatic brain injury-induced brain edema and neuronal damage. Eur J Pharmacol, 548, 99-105.
    Luis, C. A., & Mittenberg, W. (2002). Mood and anxiety disorders following pediatric traumatic brain injury: a prospective study. Journal of clinical and experimental neuropsychology, 24, 270-279.
    Lundberg, J. O., Gladwin, M. T., Ahluwalia, A., et al. (2009). Nitrate and nitrite in biology, nutrition and therapeutics. Nature chemical biology, 5, 865-869.
    Ma, H. P., Chen, P. S., Wong, C. S., et al. (2019). Psychometric evaluation of anxiety, depression, and sleep quality after a mild traumatic brain injury: a longitudinal study. Behav Neurol, 2019, 4364592.
    Maas, A. I. R., Menon, D. K., Adelson, P. D., et al. (2017). Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol, 16, 987-1048.
    Maggio, N., Shavit Stein, E., & Segal, M. (2015). Ischemic LTP: NMDA‐dependency and dorso/ventral distribution within the hippocampus. Hippocampus, 25, 1465-1471.
    Marklund, N. (2016). Rodent models of traumatic brain injury: methods and challenges. In Injury Models of the Central Nervous System (pp. 29-46). Springer.
    Matsumoto, D., Ushio, S., Wada, Y., et al. (2021). Bumetanide prevents diazepam-modified anxiety-like behavior in lipopolysaccharide-treated mice. Eur. J. Pharmacol., 904, 174195.
    Maurya, P. K., Noto, C., Rizzo, L. B., et al. (2016). The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 65, 134-144.
    Max, J. E., Keatley, E., Wilde, E. A., et al. (2011). Anxiety disorders in children and adolescents in the first six months after traumatic brain injury. J Neuropsychiatry Clin Neurosci, 23, 29-39.
    Mayer, A. R., Quinn, D. K., & Master, C. L. (2017). The spectrum of mild traumatic brain injury: A review. Neurology, 89, 623-632.
    McCauley, S. R., Wilde, E. A., Anderson, V. A., et al. (2012). Recommendations for the use of common outcome measures in pediatric traumatic brain injury research. J Neurotrauma, 29, 678-705.
    McEwen, B. S. (2006). Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin Neurosci, 8, 367-381.
    McInnes, K., Friesen, C. L., MacKenzie, D. E., et al. (2017). Mild traumatic brain injury (mTBI) and chronic cognitive impairment: a scoping review. PLoS One, 12, e0174847.
    Medina, J. H., & Viola, H. (2018). ERK1/2: a key cellular component for the formation, retrieval, reconsolidation and persistence of memory. Front. Mol. Neurosci., 11, 361.
    Menon, D. K., Schwab, K., Wright, D. W., et al. (2010). Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil, 91, 1637-1640.
    Miao, Z., Wang, Y., & Sun, Z. (2020). The relationships between stress, mental disorders, and epigenetic regulation of BDNF. Int J Mol Sci, 21.
    Mioni, G., Grondin, S., & Stablum, F. (2014). Temporal dysfunction in traumatic brain injury patients: primary or secondary impairment? Front. Hum. Neurosci., 8, 269.
    Miroshnichenko, K., Chernikov, M., & Pozdnyakov, D. (2021). Pharmacological screening of a potentially effective compound for the treatment of chronic traumatic encephalopathy among new pyrimidine derivatives.
    Moore, E. L., Terryberry-Spohr, L., & Hope, D. A. (2006). Mild traumatic brain injury and anxiety sequelae: a review of the literature. Brain Inj, 20, 117-132.
    Morgan, C. A., Grillon, C., Southwick, S. M., et al. (1995). Fear-potentiated startle in posttraumatic stress disorder. Biol Psychiatry, 38, 378-385.
    Moylan, S., Berk, M., Dean, O. M., et al. (2014). Oxidative & nitrosative stress in depression: why so much stress? Neurosci. Biobehav. Rev., 45, 46-62.
    Mychasiuk, R., Farran, A., & Esser, M. J. (2014). Assessment of an experimental rodent model of pediatric mild traumatic brain injury. J. Neurotrauma, 31, 749-757.
    NCIPC. (2003). Report to Congress on mild traumatic brain injury in the United States: Steps to prevent a serious public health problem. Centers for Disease Control and Prevention.
    Novaes, L. S., Dos Santos, N. B., Perfetto, J. G., et al. (2018). Environmental enrichment prevents acute restraint stress-induced anxiety-related behavior but not changes in basolateral amygdala spine density. Psychoneuroendocrinology, 98, 6-10.
    Ojo, J. O., Mouzon, B., Algamal, M., et al. (2016). Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased T-Tau and Tau oligomers. J Neuropathol Exp Neurol, 75, 636-655.
    Pang, K. C., Sinha, S., Avcu, P., et al. (2015). Long-lasting suppression of acoustic startle response after mild traumatic brain injury. J Neurotrauma, 32, 801-810.
    Papp, M., Willner, P., & Muscat, R. (1991). An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology, 104, 255-259.
    Park, H. Y., Park, C., Hwang, H. J., et al. (2014). 7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-kappaB and MAPK signaling pathways. Int J Mol Med, 33, 1027-1034.
    Peruzzaro, S. T., Andrews, M. M. M., Al-Gharaibeh, A., et al. (2019). Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury. J Neuroinflammation, 16, 2.
    Phillips, C. (2017). Brain-derived neurotrophic factor, depression, and physical activity: making the neuroplastic connection. Neural Plast., 2017.
    Phillips, C. (2017). Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast, 2017, 7260130.
    Popernack, M. L., Gray, N., & Reuter-Rice, K. (2015). Moderate-to-severe traumatic brain injury in children: complications and rehabilitation strategies. J Pediatr Health Care, 29, e1-7.
    Postolache, T. T., Wadhawan, A., Can, A., et al. (2020). Inflammation in traumatic brain injury. J Alzheimers Dis, 74, 1-28.
    Pouysségur, J., & Lenormand, P. (2016). ERK1 and ERK2 map kinases: specific roles or functional redundancy? Front. Cell Dev. Biol., 4, 53.
    Rasmusson, A. M., Shi, L., & Duman, R. (2002). Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology, 27, 133-142.
    Razzoli, M., Domenici, E., Carboni, L., et al. (2011). A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress. Genes Brain Behav, 10, 424-433.
    Reeves, T. M., Lyeth, B. G., & Povlishock, J. T. (1995). Long-term potentiation deficits and excitability changes following traumatic brain injury. Exp Brain Res, 106, 248-256.
    Reutov, V., Samosudova, N., & Sorokina, E. (2019). A model of glutamate neurotoxicity and mechanisms of the development of the typical pathological process. Biophysics, 64, 233-250.
    Reutov, V., Sorokina, E., & Sukmansky, O. (2020). Cycles of nitric oxide (NO), superoxide radical anion (• O2-) and hydrogen sulfur/sulfur dioxide (H2S/SO2) in mammals. Curr Res Biopolymers, 2, 112.
    Reutov V.P., S. E. G., Samosudova N.V., Okhotin V.E. (2021). Pathogenesis of neurological and mental disorders in patients with Covid-19: possible role of reactive nitrogen and oxygen species. Int. J. Psychiatry, 6, 33-42.
    Rezayof, A., Hosseini, S. S., & Zarrindast, M. R. (2009). Effects of morphine on rat behaviour in the elevated plus maze: the role of central amygdala dopamine receptors. Behav Brain Res, 202, 171-178.
    Rockhill, C. M., Jaffe, K., Zhou, C., et al. (2012). Health care costs associated with traumatic brain injury and psychiatric illness in adults. J Neurotrauma, 29, 1038-1046.
    Roddy, D. W., Farrell, C., Doolin, K., et al. (2019). The hippocampus in depression: more than the sum of its parts? advanced hippocampal substructure segmentation in depression. Biological Psychiatry, 85, 487-497.
    Rodriguez‐Grande, B., Obenaus, A., Ichkova, A., et al. (2018). Gliovascular changes precede white matter damage and long‐term disorders in juvenile mild closed head injury. Glia, 66, 1663-1677.
    Roozenbeek, B., Maas, A. I., & Menon, D. K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol., 9, 231.
    Russell, J. M. (2000). Sodium-potassium-chloride cotransport. Physiol Rev, 80, 211-276.
    Sagarkar, S., Bhamburkar, T., Shelkar, G., et al. (2017). Minimal traumatic brain injury causes persistent changes in DNA methylation at BDNF gene promoters in rat amygdala: A possible role in anxiety-like behaviors. Neurobiol Dis, 106, 101-109.
    Samosudova, N., & Reutov, V. (2018). Ultrastructural changes in the frog brain in the presence of high concentrations of glutamate and an NO-generating compound. Biophysics, 63, 402-415.
    Satterthwaite, T. D., Kable, J. W., Vandekar, L., et al. (2015). Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology, 40, 2258-2268.
    Savardi, A., Borgogno, M., De Vivo, M., et al. (2021). Pharmacological tools to target NKCC1 in brain disorders. Trends in pharmacological sciences, 42, 1009-1034.
    Schoenfeld, T. J., Kloth, A. D., Hsueh, B., et al. (2014). Gap junctions in the ventral hippocampal-medial prefrontal pathway are involved in anxiety regulation. J. Neurosci., 34, 15679-15688.
    Schuette, P. J., Reis, F. M., Maesta-Pereira, S., et al. (2020). Long-Term characterization of hippocampal remapping during contextual fear acquisition and extinction. J. Neurosci., 40, 8329-8342.
    Seibenhener, M. L., & Wooten, M. C. (2015). Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp, e52434.
    Silver, J. M., McAllister, T. W., & Arciniegas, D. B. (2019). Textbook of traumatic brain injury. American Psychiatric Pub.
    Sorokina, E., Reutov, V., Senilova, Y. E., et al. (2007). Changes in ATP content in cerebellar granule cells during hyperstimulation of glutamate receptors: possible role of NO and nitrite ions. Bull. Exp. Biol. Med., 143, 442-445.
    Sorokina, E., Semenova, Z. B., Averianova, N., et al. (2021). Polymorphism of the APOE gene and markers of brain damage in the outcomes of severe traumatic brain injury in children. Neurosci. Behav. Physiol., 51, 28-35.
    Sorokina, E. G., Semenova, Z. B., Reutov, V. P., et al. (2021). Brain biomarkers in children after mild and severe traumatic brain injury. Acta Neurochir. Suppl., 131, 103-107.
    Sousa, N., Madeira, M. D., & Paula-Barbosa, M. M. (1998). Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study. Brain Res, 794, 199-210.
    Su, G., Haworth, R. A., Dempsey, R. J., et al. (2000). Regulation of Na(+)-K(+)-Cl(-) cotransporter in primary astrocytes by dibutyryl cAMP and high [K(+)](o). Am J Physiol Cell Physiol, 279, C1710-1721.
    Suvrathan, A., Bennur, S., Ghosh, S., et al. (2014). Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala. Philos. Trans. R. Soc. B: Biol. Sci., 369, 20130151.
    Tagliaferri, F., Compagnone, C., Korsic, M., et al. (2006). A systematic review of brain injury epidemiology in Europe. Acta Neurochir. (Wien.), 148, 255-268.
    Tang, J., Lu, L., Wang, Q., et al. (2020). Crocin reverses depression-like behavior in parkinson disease mice via VTA-mPFC pathway. Mol. Neurobiol., 57, 3158-3170.
    Tang, S., & Yasuda, R. (2017). Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron, 93, 1315-1324.e1313.
    Taylor, C. A., Bell, J. M., Breiding, M. J., et al. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill Summ, 66, 1-16.
    Teymoori, A., Real, R., Gorbunova, A., et al. (2020). Measurement invariance of assessments of depression (PHQ-9) and anxiety (GAD-7) across sex, strata and linguistic backgrounds in a European-wide sample of patients after traumatic brain injury. J. Affect. Disord., 262, 278-285.
    Thomas, G. M., & Huganir, R. L. (2004). MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci., 5, 173-183.
    Todkar, A., Granholm, L., Aljumah, M., et al. (2016). HPA axis gene expression and DNA methylation profiles in rats exposed to early life stress, adult voluntary ethanol drinking and single housing. Front. Mol. Neurosci., 8, 90.
    Tovote, P., Fadok, J. P., & Luthi, A. (2015). Neuronal circuits for fear and anxiety. Nat Rev Neurosci, 16, 317-331.
    Tramontana, M. G., Prokop, J. W., Williamson, E., et al. (2021). Traumatic brain injury-related attention deficits in children: a controlled treatment trial with lisdexamfetamine dimesylate. Brain Sci, 11.
    Vaishnavi, S., Rao, V., & Fann, J. R. (2009). Neuropsychiatric problems after traumatic brain injury: unraveling the silent epidemic. Psychosomatics, 50, 198-205.
    Voss, J. D., Connolly, J., Schwab, K. A., et al. (2015). Update on the epidemiology of concussion/mild traumatic brain injury. Curr Pain Headache Rep, 19, 32.
    Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature protocols, VOL.2 NO.2, 6.
    Wang, B., Wu, N., Liang, F., et al. (2014). 7,8-dihydroxyflavone, a small-molecule tropomyosin-related kinase B (TrkB) agonist, attenuates cerebral ischemia and reperfusion injury in rats. J Mol Histol, 45, 129-140.
    Weston, N. M., Rolfe, A. T., Freelin, A. H., et al. (2021). Traumatic brain injury modifies synaptic plasticity in newly-generated granule cells of the adult hippocampus. Exp. Neurol., 336, 113527.
    Williams, W. H., Chitsabesan, P., Fazel, S., et al. (2018). Traumatic brain injury: a potential cause of violent crime? Lancet Psychiatry, 5, 836-844.
    Willner, P., Towell, A., Sampson, D., et al. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93, 358-364.
    Wolf, J. A., & Koch, P. F. (2016). Disruption of network synchrony and cognitive dysfunction after traumatic brain injury. Front. Syst. Neurosci., 10, 43.
    Wurzelmann, M., Romeika, J., & Sun, D. (2017). Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regen Res, 12, 7-12.
    Yamada, J., & Jinno, S. (2019). Potential link between antidepressant-like effects of ketamine and promotion of adult neurogenesis in the ventral hippocampus of mice. Neuropharmacology, 158, 107710.
    Yang, T., Nie, Z., Shu, H., et al. (2020). The role of BDNF on neural plasticity in depression. Front. Cell. Neurosci., 14, 82.
    Yankelevitch-Yahav, R., Franko, M., Huly, A., et al. (2015). The forced swim test as a model of depressive-like behavior. J Vis Exp.
    Yao, Z., Fu, Y., Wu, J., et al. (2018). Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav.
    Yohn, C. N., Gergues, M. M., & Samuels, B. A. (2017). The role of 5-HT receptors in depression. Mol Brain, 10, 28.
    Yu, S., Kaneko, Y., Bae, E., et al. (2009). Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res, 1287, 157-163.
    Zhang, J., Pu, H., Zhang, H., et al. (2017). Inhibition of Na(+)-K(+)-2Cl(-) cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem Int, 111, 23-31.
    Zhang, J. C., Yao, W., & Hashimoto, K. (2016). Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol, 14, 721-731.
    Zhang, J. C., Yao, W., Ren, Q., et al. (2016). Depression-like phenotype by deletion of alpha7 nicotinic acetylcholine receptor: Role of BDNF-TrkB in nucleus accumbens. Sci Rep, 6, 36705.
    Zhang, X., Kim, J., & Tonegawa, S. (2020). Amygdala reward neurons form and store fear extinction memory. Neuron, 105, 1077-1093.
    Zhong, F., Liu, L., Wei, J.-L., et al. (2019). Brain-derived neurotrophic factor precursor in the hippocampus regulates both depressive and anxiety-like behaviors in rats. Front. Psychiatry, 9, 776.

    無法下載圖示 電子全文延後公開
    2027/02/09
    QR CODE