簡易檢索 / 詳目顯示

研究生: 李紹銘
論文名稱: 多取代螺環己烷化合物之有機催化[4+2]連鎖環化反應
Organocatalytic Synthesis of Substituted Spirocyclohexanes via [4+2] Annulation Strategy Between 2-Arylideneindane-1,3-diones and Glutaraldehyde
指導教授: 陳焜銘
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 115
中文關鍵詞: 一鍋化多取代螺環己烷不對稱有機催化連鎖反應
英文關鍵詞: One pot, Substituted spirocyclohexanes, Organocatalytic synthesis
論文種類: 學術論文
相關次數: 點閱:228下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機合成研究領域,以生成單一碳-碳鍵為主。若要合成官能基複雜天然物,需要數十步驟,官能基保護與去保護反應之間,使得產率銳減、降低原子使用率及造成能源浪費等問題。因此化學家開發不對稱有機連鎖合成策略,合成多個掌性中心的產物分子反應,開展有機合成新的領域,經由建立多個碳-碳鍵以及立體化學中心,合成具高鏡像選擇性的化合物,此合成方法在天然物全合成與藥物設計有更多應用性。本實驗使用2-芳香環亞甲基氫茚-1‚3-二酮和戊二醛,加入20 mol%的‚-L-雙苯環脯胺醇矽醚有機催化劑及20 mol%N,N-二異丙基乙基胺(N,N-diisopropyl ethylamine,DIPEA),在乙醚為溶劑及反應溫度為0 ℃下,進行不對稱催化Michael/aldol連鎖反應。經由簡單的操作,此一鍋化的反應,順利獲得多取代環己烷螺環之產物,其有優異的產率(yield = 99%)及非常良好的立體選擇性(>95:5 dr和95% ee)。藉著核磁共振儀,分析產物中各個氫原子的分裂狀況,並經由單晶繞射X-ray,確認其產物絕對立體組態。期待此合成方法,在產業界及學術界有所貢獻。

    The field of organic syntheses that main work is to generate single carbon-carbon bond in the past. To the synthesis complex natural products with multifunctional groups need dozens of steps. Between protection and deprotection in the functional groups, it will cause decreasing yield, reducing atom economy and energy wastage. Chemist developed the strategy of asymmetric organocatalytic to solve the issues. The products with multifunctional groups and chiral centers can be manufactured in one pot reaction. Through carbon-carbon built and chiral center constructed, that is able to synthesize highly enantioselectivity and yield products and apply to nature products total synthesis and drug design. The brand-new organic syntheses concept is worthy of further study. In this experiment, treatment of 2-arylideneindane-1‚3-diones with glutaraldehyde using a catalytic amount of ‚-L-diphenylprolinol trimethylsilyl ether (20 mol%) and DIPEA (20 mol%) in diethyl ether at 0 oC to give multisubstituted spirocyclohexanes via domino Michael-aldol reaction. This one-pot sequential catalysis for construction of substituted spirocyclohexane carbaldehydes with three stereocenters via a formal [4 + 2] annulation strategy is synthetically useful. Simple operated, we obtain good chemical yields and high-to-excellent stereoselectivities (>95:5 dr and 95% ee). The split and interaction of hydrogen atoms are analyzed by NMR. The absolute conformation is confirmed by X-ray ORTEP spectra.

    中文摘要 i ABSTRACT ii 目錄 iii 試劑縮寫對照表 v 第一章 序論 1-1 前言 1 1-2 有機不對稱催化方法 2 1-2-1 非共價鍵催化反應 4 1-2-2 共價鍵催化反應 8 1-3 連鎖反應 11 1-3-1 DOMINO REACTION 14 1-3-2 CASCADE REACTION 16 1-3-3 TANDEM REACTION 19 1-4 螺環分子應用與合成 20 1-5 研究動機 21 第二章 實驗結果與討論 2-1 不對稱有機催化連鎖反應 22 2-1-1 溶劑效應之探討 23 2-1-2 添加劑效應之探討 25 2-1-3 取代基效應 27 2-2 多取代螺環己烷之產物結構分析 29 2-2-1 高效液像層析儀分析 29 2-2-2 核磁共振儀分析 30 2-2-3 晶體分析 36 2-2-4 機構之探討 37 2-3 結論 38 第三章 實驗部分 3-1 分析儀器及基本實驗操作 39 3-2 連鎖反應合成多取代環己烷之一般步驟 41 3-3 光譜數據 42 第四章 參考文獻 56 附錄一 59 附錄二 99 附錄三 115

    1. The article of "Information for the Public" for the Nobel Prize in Chemistry 2001.
    2. Falagas, M. E.; Grammatikos, A. P.; Michalopoulos, A. Expert Review. 2008, 6, 593.
    3. Noyori, R.; Tomino, I.; Yanimoto, Y.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6709.
    4. Geden, J. V.; Beasley, B.O.; Clarkson, G. J.; Shipman, M. J. Org. Chem. 2013, 78, 12243.
    5. Liu, T.; wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. J. Org. Chem. 2011, 76, 4119.
    6. Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity.
    7. Badger, M. Annu. Rev. 1994, 45, 369.
    8. Povarov, L. S. Chem. Rev. 1967, 36, 656.
    9. Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. 2009, 131, 4598.
    10. (a) Little, R. D.; Masjedizadeh, M. R.; Wallquist, O.; McLoughlin, J. I. Org. React. 1995, 47. 315.
    (b)Tokoroyama, T. Eur J. Org. Chem. 2010, 10, 2009.
    11. Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Org. Lett. 2006, 8, 2901.
    12. Wang, X.; Yao, W.; Yao, z.; Ma, C. J. Org. Chem. 2012, 77, 2959.
    13. Hollman, A. Heart. 1991, 66, 301.
    14. For review articles of Aldol reactions, see:
    (a) Carreira, E. M.; Fettes, A.; Martl, C. Org. React. 2006, 67, 1.

    (b) Northrup A. B.; Mangion I. K.; Hettche F.; MacMillan D. W. C. Tetrahedron Lett. 2004, 43, 2152.
    15. Mase, N .; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F III. J. Am. Chem. Soc. 2006, 128, 734.
    16. Wang, W.; Li, H.; Wang, J.; Zu. L. J. Am. Chem. Soc. 2006, 128, 10354.
    17. For review articles of domino reactions, see:
    (a) Pellissier, H. Chem. Rev. 2013, 113, 442.
    (b) de Graaff, C.; Ruijter, E.; Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969.
    (c) Tietze, L. F.; Brasche, G.; Gericke, K. M. J. Am. Chem. Soc. 2007, 129, 7476.
    (d) Guillena, G.; Ramón, D. J.; Yus, M. Tetrahedron: Asymmetry 2007, 18, 693.
    (e) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.
    18. Moss, G.P. Pure & Appl. Chem. 1989, 61, 1783.
    19. Corey, E. J.; Russey, W. E.; Ortiz de Montellano, P. R. J. Am. Chem. Soc. 1966, 88, 4750.
    20. Abe, I.; Rohmer, M.; Prestwich G. D. Chem. Rev. 1993, 93, 2189.
    21. Johnson, W. S. Angew. Chem., Int. Ed. 1976, 15, 9.
    22. Human Metabolome Database. Retrieved 31 July 2013.
    23. Hardinga, W. W.; Lewisb, P. A.; Jacobsa H. Tetrahedron Lett. 1995, 36, 9137.
    24. Xiong, Z.; Corey, E. J. J. Am. Chem. Soc. 2000, 122, 9328.
    25. Tietze, L. F. Chem. Rev. 1996, 96, 115.
    26. Tan, B.; Chua, P. J.; Zeng, X.; Lu, M.; Zhong, G. Org. Lett. 2008, 10, 3489.
    27. For review articles of Henry reactions, see:
    (a) Luzzio, F.A. Tetrahedron 2001, 57, 915.
    (b) Marcelli, T.; van der Haas, R.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem. Int. Ed. 2006, 45, 929.

    (c) Gogoi, N.; Boruwa, J.; Barua, N.C. Tetrahedron Lett. 2005, 46, 7581.
    28. Hayashi, Y.; Okano, T.; Aratake, S.; Hazelard, D. Angew. Chem., Int. Ed. 2007, 46, 4922.
    29. Pellissier, H. Adv. Synth. Catal. 2012, 354, 237.
    30. Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
    31. Liu, C.; Zhang, X.; Wang, R.; Wang, W. Org. Lett. 2010, 12, 4948.
    32. Denmark, S. E. et al. Chem. Rev. 1996, 96, 137.
    33. Marchand, A. P.; Chou, T.-C. J. Chem. Soc., Perkin Trans. 1973, 1, 1948
    34. For review articles of Diels-Alder reactions, see:
    (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
    (b) Riant, O.; Kagan, H. B. Tetrahedron Lett. 1989, 30, 7403.
    35. IUPAC, Compendium of Chemical Terminology, 2nd ed.
    36. Tang, B.-A.; Zhang, Y.-H.; Song, R.-J.; Tang, D.-J.; Deng, G.-B.; Wang, Z.-Q.; Xin, Y.-X.; Xin, Y.-Z.; Li, J.-H. J. Org. Chem. 2012, 77, 2837.
    37. Noole, A.; Ilmarinen, K.; Järving, I.; Lopp, M.; Kanger, T. J. Org. Chem. 2013, 78, 8117.
    38. Zhao, G.-L.; Dziedzic, P.; Ullah, F.; Eriksson, L.; Córdova, A. Tetrahedron Lett. 2009, 50, 3458.
    39. Ramachary, D. B.; Anebouselvy, K.; Chowdari, N. S.; Barbas, C. F., III. J. Org. Chem. 2004, 69, 5838.
    40. Li, E.; Huang, Y.; Xin, P. Org. Lett. 2013, 15, 3138.

    下載圖示
    QR CODE