簡易檢索 / 詳目顯示

研究生: 葉千榕
Ye, Chian-Rong
論文名稱: 電腦化認知診斷評量之編製與驗證─以異分母分數加減單元為例
The Construction and Validation of Computerized Cognitive Diagnostic Assessment: Taking Addition and Subtraction of Fractions with Different Denominators as An Example
指導教授: 張國恩
Chang, Kuo-En
宋曜廷
Sung, Yao-Ting
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 120
中文關鍵詞: 認知診斷評量認知診斷模式DINA模式G-DINA模式DINO模式
英文關鍵詞: Cognitive Diagnostic Assessment, Cognitive Diagnostic Models, DINA model, G-DINA model, DINO model
論文種類: 學術論文
相關次數: 點閱:535下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以提供受試者學習強項與弱點診斷回饋訊息之認知診斷評量可被用以評估受試者之分數學習情況,以提升教學與學習品質。但現僅有少數認知診斷評量可供應用,如何編製一個認知診斷評量以給予可用的診斷訊息,是一個值得討論的問題。
    本研究旨在發展國小五年級數學異分母分數加減單元認知診斷評量,探討運用DINA模式、G-DINA模式與DINO模式於參與此認知診斷評量的547位五、六年級學生之作答反應資料中作診斷分析,透過模式適配指標的分析及比較,找出最適合於解釋此認知診斷評量診斷測驗結果之認知診斷模式,以此認知診斷模式進行試題鑑別度分析。並依據30位受試者的訪談對話內容逐字稿探究及檢驗此認知診斷評量之分類準確率。
    研究結果顯示DINA模式較適宜被用以詮釋受試者作答反應資料與推論受試者認知屬性可能精熟狀態,且於此認知診斷模式下,多數認知診斷試題之整體試題鑑別度達0.5以上。除此之外,透過訪談資料獲知的受試者真實學習狀態驗證DINA模式推測得到的受試者認知屬性可能精熟狀態,兩者之間的一致性達0.75,顯示DINA模式之推論結果具有一定之效度。

    Cognitive diagnostic assessments aim to provide formative diagnostic feedback of test takers’ learning strengths and weaknesses. It could be used to evaluate test takers’ fraction learning situation and to improve the quality of teaching and learning. However, few cognitive diagnostic assessments are specifically designed for providing diagnostic feedback. How to construct a cognitive diagnostic assessment to provide effective feedback is worth discussing.
    The purpose of the research is to develop a mathematical cognitive diagnostic assessment of addition and subtraction of fractions with different denominators for fifth graders by applying deterministic-input noisy “and” gate(DINA) model, generalized deterministic inputs, noisy “and” gate(G-DINA) model and deterministic input “or” gate(DINO) model. Five hundred and forty-seven students’ response data i s explored and diagnosed to find out the most suitable cognitive diagnostic model which could best interpret test takers’ response through the analysis and comparison of the fit of the model to the data. With this cognitive diagnostic model, the global item discrimination index of every diagnostic item could be computed. Thirty interviewees’ interview transcripts are also used to investigate and examine the classification accuracy of this cognitive diagnostic assessment.
    The results showed that DINA model was more suitable for interpreting test takers’ response data and for inferring their possible mastery states of attributes. In DINA model, most of the diagnostic items’ global item discrimination indices were above 0.5. Besides, according to the true learning states of the test takers, known from the interview, the accuracy of the test takers’ possible mastery states of attributes inferred through the DINA model could be proved. The consistency between them is 0.75, showing that DINA model had quite validity.

    附表目錄......................................vi 附圖目錄......................................viii 第一章 緒論....................................1 第一節 研究背景與動機..........................1 第二節 研究目的與待答問題.......................5 第二章 文獻探討.................................6 第一節 分數的學習困難..........................6 壹、難以理解與表現分數關係....................6 貳、對分子與分母的作用及兩者之間的關係感到困惑....7 參、使用差值比較(gap thinking)方法...........7 肆、對等值與等分概念的缺乏注意.................8 伍、與學習分數運算相關的困難...................8 第二節 診斷評量..............................10 壹、認知診斷評量.............................10 貳、認知診斷評量的設計架構.....................12 參、小結...................................19 第三節 認知診斷模式...........................20 壹、認知診斷模式之概觀........................20 貳、DINA模式................................25 參、DINO模式................................29 肆、G-DINA模式..............................33 伍、小結....................................35 第三章 數學認知診斷評量的設計與發展..................37 第一節 學習內容架構............................37 第二節 診斷評量設計架構與原則....................42 第四章 研究方法..................................51 第一節 研究參與者.............................51 第二節 研究工具...............................53 第三節 研究程序...............................57 第四節 資料蒐集與分析..........................60 第五章 結果與討論................................71 第一節 模式適配度.............................71 第二節 試題鑑別度.............................84 第三節 分類結果...............................86 第四節 綜合討論...............................92 第六章 結論與建議................................95 第一節 結論..................................95 第二節 建議與未來方向..........................97 參考文獻........................................99 附錄...........................................110 附錄一 異分母分數的加減診斷試題.....................111 附錄二A 異分母分數加減訪談試題卷....................116 附錄二B 異分母分數加減訪談問卷......................118 附錄三 訪談評分表.................................120

    Akaike, H. (1974). A new look at the statistical identification model. IEEE Transactions on Automated Control, 19(6), 716–723.
    Ashlock, R. B. (1986). Error patterns in computation: A semi-programmed approach (4th ed.). Columbus, Ohio: Merrill Publishing Company.
    Alderson, J. C., Clapham, C., & Wall, D. (1995). Language testing construction and evaluation. Cambridge: Cambridge University Press.
    Armstrong, B.E. & Larson, C.N. (1995). Students’ use of part-whole & direct comparison strategies for comparing partitioned rectangles, Journal of Research in Mathematics Education, 26(1), 2–19.
    Almond, R.G., Steinberg, L.S., & Mislevy, R.J. (2003). A framework for reusing assessment components. In: Yanai, H., Okada, A., Shigemasu, K., Kano, Y., Meulman, J.J. (Eds.), New Developments in Psychometrics. Springer, Tokyo, pp. 281–288.
    Alderson, J. C. (2005). Diagnosing foreign language proficiency: the interface between learning and assessment. London: Continuum.
    Anthony, G. & Walshaw, M. (2007). Effective pedagogy in mathematics/ pangarau: Best evidence synthesis iteration [BES]. Wellington: Ministry of Education.
    Brown, J. S., & VanLehn, K. (1982). Towards a generative theory of “bugs." In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and Subtraction: A Cognitive Perspective (pp. 117-135). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
    Behr , M. J., Lesh, R., Post, T. R., & Silver, E.A. (1983). Rational-number concepts. In R. Lesh & M. Landau (Eds), Acquisition of mathematics concepts and processes (pp. 91-126). London: Academic Press.
    Brown, C. A. (1993). A critical analysis of teaching rational number. In T. P. Carpenter, E. Fennema & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 197-218). Hillsdale, NJ: Erlbaum.
    Behr, M., Harel, G., Post, T. & Lesh, R. (1993). Rational numbers: Toward a semantic analysis-emphasis on the operator construct. In T. P. Carpenter, E. Fennema & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 13-47). Hillsdale, NJ: Erlbaum.
    Birenbaum, M., Kelly, A. E., Tatsuoka, K. K., & Gutvirtz, Y. (1994). Attribute-mastery patterns from rule space as the basis for student models in algebra. International Journal of Human-Computer Studies, 40, 497–508.
    Brown, J. D., & Hudson, T. (2002). Criterion-referenced language testing. Cambridge: Cambridge University Press.
    Birenbaum, M., Tatsuoka, C., & Yamada, Y. (2004). Diagnostic assessment in TIMMS-R: Between countries and within country comparisons of eight graders' mathematics performance. Studies in Educational Evaluation, 30, 151-173.
    Brown, G., & Quinn, R. J. (2006). Algebra students' difficulty with fractions: An error analysis. Australian Mathematics Teacher, 62(4), 28-40.
    Basokcu, T. O., Ogretmen, T., & Kelecioglu, H. (2013). Model data fit comparison between DINA and G-DINA in cognitive diagnostic models. Education Journal, 2(6), 256-262.
    Basokcu, T. O. (2014). Classification Accuracy Effects of Q-matrix validation and sample size in DINA and G-DINA models. Journal of Education and Practice, 5(6), 220-230.
    Carpenter, T., Corbitt, M., Kepner, H., Lindquist, M., & Reys, R. (1980). National assessment: A perspective of students’ mastery of basic mathematics skills. In M. M. Lindquist (Ed.), Selected issues in mathematics education (pp. 215-227). Chicago: National Society for the Study of Education and Reston, VA: National Council of Teachers of Mathematics.
    Charalambous, C. Y., Delaney, S., Hsu, H. Y., & Mesa, V. (2010). A comparative analysis of the addition and subtraction of fractions in textbooks from three countries. Mathematical Thinking and Learning, 12(2), 117-151.
    Cui, Y., Gierl, M. J., & Chang, H. H. (2012). Estimating classification consistency and accuracy for cognitive diagnostic assessment. Journal of Educational Measurement, 49(1), 19-38.
    Chen, J., de la Torre, J., & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50(2), 123-140.
    Davis, G., Hunting, R., & Pearn, C. (1993). What might a fraction mean to a child and how would a teacher know? Journal of Mathematical Behavior, 12(1), 63-76.
    de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353.
    Doornik, J.A. (2007). Object-Oriented Matrix Programming Using Ox (3rd ed.). London: Timberlake Consultants Press and Oxford. Retrieved from www.doornik.com
    DiBello, L.V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. V. Rao & S. Sinharay (Eds.), Handbook of Statistics, Volume.26, Psychometrics (pp. 979–1030). Amsterdam: Elsevier.
    de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73(4), 595-624.
    de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130.
    DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35(1), 8-26.
    de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
    Dhlamini, Z. B., & Kibirige, I. (2014). Grade 9 Learners’ Errors And Misconceptions In Addition Of Fractions. Mediterranean Journal of Social Sciences, 5(8), 236.
    Ebel, R. L. (1979). Essentials of educational measurement. (3rd ed.). Englewood Cliffs, N.J. : Prentice-Hall.
    Empson, S. & Levi, L. (2011). Extending children’s mathematics: Fractions and decimals: Innovations in cognitively guided instruction. Portsmouth, NH: Heinemann.
    Ginsburg, H.P. (1989). Children’s arithmetic: how they learn it and how you teach it (2nd ed.). Austin, Texas: Pro-Ed.
    Gitomer, D. H., & Yamamoto, K. (1991). Performance modeling that integrates latent trait and class theory. Journal of Educational Measurement, 28(2), 173–189.
    Gould, P., Outhred, L. & Mitchelmore, M. (2006). One-third is three quarters of one-half. Paper presented at the annualmeeting of the Mathematics Education Research Group of Australia, Australia.
    Gorin, J. S. (2007). Test construction and diagnostic testing. In J. P. Leighton & M. J. Gierl (Eds.), Cognitive diagnostic assessment for education: Theory and applications (pp. 173–201). New York: Cambridge University Press.
    Gierl, M, J., Wang, C., & Zhou, J. (2008). Using the attribute hierarchy method to make diagnostic inferences about examinees’ cognitive skills in Algebra on the SATU+00A9. Journal of Technology, Learning, and Assessment, 6(6), 1-53.
    Gierl, M. J., Cui, Y., & Zhou, J. (2009). Reliability and attribute-based scoring in cognitive diagnostic assessment. Journal of Educational Measurement, 46(3), 293-313.
    Gu, Z. (2011). Maximizing the Potential of Multiple-Choice Items for Cognitive Diagnostic Assessment. Unpublished Doctoral dissertation, University of Toronto, Canada.
    George, A. C. (2013). Investigating CDMs: Blending theory with practicality. Unpublished Doctoral dissertation, TU Dortmund University, Germany.
    Hiebert, J. (1988). A theory of developing competence with written mathematical symbols. Educational studies in mathematics, 19(3), 333-355.
    Haertel, E. H. (1989). Using restricted latent class models to map skill structure of achievement items. Journal of Educational Measurement, 26(4), 301–321.
    Huinker, D. (1998). Letting fraction algorithms emerge through problem solving. In L. J. Morrow and M. J. Kenny (Eds.), The Teaching and Learning of Algorithms in School Mathematics (pp. 198-203). Reston, VA: National Council of Teachers of Mathematics.
    Hecht, S.A., Close, L., & Santisi, M. (2003). Sources of individual differences in fraction skills. Journal of Experimental Child Psychology, 86(4), 277-302.
    Henson, R. A., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29(4), 262–277.
    Haberman, S. (2008). When can subscores have value? Journal of Educational and Behavioral Statistics, 33(2), 204-229.
    Hartz, S., & Roussos, L.(2008). The Fusion Model for skill diagnosis: Blending theory with practicality (Report No. RR-08-71). U.S.: Educational Testing Service.
    Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log linear models with latent variables. Psychometrika, 74(2), 191-210.
    Huebner, A. (2010). An overview of recent development in cognitive diagnostic computer adaptive assessments. Practical Assessment, Research & Evaluation, 15(3), 1-7.
    Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for cognitive diagnosis models. Educational and Psychological Measurement, 71(2), 407-419.
    Hackenberg, A., & Lee, M. (2012). Pre-fractional middle school students’ algebraic reasoning. In LR Van Zoest, J.-J. Lo, & JL Kratky (Eds.), Proceedings of the 34th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 943-950).
    Idris, N., & Narayanan, L. M. (2011). Error patterns in addition and subtraction of fractions among form two students. Journal of Mathematics Education, 4(2), 35-54.
    Junker, B. W. (1999). Some statistical models and computational methods that may be useful for cognitively-relevant assessment. Prepared for the Committee on the Foundation of Assessment, National Research Council, Washington DC, November 30, 1999. Download June. 08, 2014 from http://www.stat.cmu.edu/~brian/nrc/cfa/.
    Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.
    Jigyel, K., & Afamasaga-Fuata’i, K. (2007). Students’ conceptions of models of fractions and equivalence. Australian Mathematics Teacher, 63(4), 17-25.
    Jang, E. E. (2008). A framework for cognitive diagnostic assessment. In C.A. Chapelle, Y. -R. Chung, & J. Xu (Ed.), Toward adaptive CALL: Natural language processing for diagnostic language assessment (pp. 117-131). Ames, IA: Iowa State University.
    Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for fusion model application LanguEdge assessment. Language Testing, 26(1), 31-73.
    Klein, M. F., Birenbaum, M., Standiford, S. N., & Tatsuoka, K.K. (1981). Logical error analysis and construction of tests to diagnose student 'bugs' in addition and subtraction of fractions (Tech. Rep. 81-6-NIE). Urbana: University of Illinois, CERL.
    Kamii, C., & Clark, F. B. (1995). Equivalent fractions: Their difficulty and educational implications. The Journal of Mathematical Behavior, 14(4), 365-378.
    Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
    Kong, S. C. (2008). The development of a cognitive tool for teaching and learning fractions in the mathematics classroom: A design-based study. Computers & Education, 51(2), 886-899.
    KuninaU+2010Habenicht, O., Rupp, A. A., & Wilhelm, O. (2012). The Impact of Model Misspecification on Parameter Estimation and Item-Fit Assessment in Log-Linear Diagnostic Classification Models. Journal of Educational Measurement,49(1), 59-81.
    Kaplan, R. M. (2013). Psychological Testing: Principles, Applications, and Issues. Belmont, CA : Wadsworth/Cengage Learning.
    Leighton,J., Gierl, M. J., & Hunka, S. (1999, April). Attributes in Tatsuoka’s rule-space model. Poster presented at the annual meeting of the National Council on Measurement in Education, Montreal, Quebec, Canada.
    Lamon , S. J. (2007). Rational numbers and proportional reasoning: Towards a theoretical framework for research. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-667). Reston, VA: NCTM.
    Lee, Y. W., & Sawaki, Y. (2009). Cognitive diagnosis approaches to language assessment: An overview. Language Assessment Quarterly, 6(3), 172-189.
    Liu, J., Xu, G., & Ying, Z. (2011). Learning Item-Attribute Relationship in Q-Matrix Based Diagnostic Classification Models. arXiv preprint arXiv:1106.0721.
    Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26(5), 422-441.
    Maris, E. (1995). Psychometric latent response models. Psychometrika, 60(4), 523–547.
    Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 178-212.
    Moss, J. & Case, R. (1999). Developing children’s understanding of the rational numbers: A new model and an experimental curriculum. Journal for Research in Mathematics Education, 30(2), 122-147.
    Mislevy, R. J., Almond, R. G., & Lukas, J. F. (2004). A brief introduction to Evidence-Centered Design. CSE Technical Report 632, The National Center for Research on Evaluation, Standards, and Student Testing (CRESST), Center for the Study of Evaluation (CSE). LA, CA: University of California, Los Angeles.
    Mamolo, A., Sinclair, M., & Whiteley, W. J. (2011). Proportional reasoning with a pyramid. Mathematics Teaching in the Middle School, 16(9), 544-549.
    Nichols, P. D. (1994). A framework for developing cognitively diagnostic assessments. Review of Educational Research, 64(4), 575–603.
    Orpwood, G., Schollen, L., Leek, G., Marinelli-Henriques, P., & Assiri, H. (2012). College mathematics project 2011: Final report. Retrieved July 19, 2014, from http://collegemathproject.senecac.on.ca/cmp/en/pdf/FinalReport/2011/CMP_2011_Final_Report%20-%2002Apr12%20pmh.pdf
    Post, T. R., Behr, M.J., & Lesh, R. (1986). Research-based observations about children's learning of rational number concepts. Focus On Learning Problems In Mathematics, 8(1), 39-48.
    Pellegrino, J., Chudowsky, N., & Glaser, R. (2001). Knowing what students know: The science and design of educational assessment. Washington, DC: National Academy Press.
    Pearn, C., & Stephens, M. (2004). Why you have to probe to discover what year 8 students really think about fractions. In I. Putt, R. Faragher & M. McLean (Eds.), Mathematics education for the third millenium: Towards 2010, (Proceedings of the 27th annual conference of the Mathematics Education Research Group of Australasia, Vol. 2, pp. 430-437). Sydney: MERGA.
    Rupp, A. A. (2007). The answer is in the question: A guide for describing and investigating the conceptual foundations and statistical properties of cognitive psychometric models. International Journal of Testing, 7(2), 95-125.
    Roussos, L. A., Templin, J. L., & Henson, R. A. (2007). Skills Diagnosis Using IRT-Based Latent Class Models. Journal of Educational Measurement, 44(4), 293-311.
    Rupp, A. A., & Mislevy, R. J. (2007). Cognitive foundations of structured item response theory models. In J. Leighton & M. Gierl (Eds.), Cognitive diagnostic assessment in education: Theory and applications (pp. 205–241). Cambridge: Cambridge University Press.
    Ryan, J., & Williams, J. (2007). Children’s Mathematics 4-15: Learning from errors and Misconceptions. United Kingdom: Open University Press.
    Rupp, A. A., & Templin, J. L. (2008a). Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement, 6, 219-262.
    Rupp, A. A., & Templin, J. (2008b). Effects of Q-matrix misspecification on parameter estimates and misclassification rates in the DINA model. Educational and Psychological Measurement, 68(1), 78–98.
    Roberts, M. R., & Gierl, M. J. (2010). Developing score reports for cognitive diagnostic assessments. Educational Measurement: Issues and Practice,29(3), 25-38.
    Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York: Guilford Press.
    Roberts, M. R., & Gierl, M. J. (2011, April).Developing and Evaluating Score Reports for a Diagnostic Mathematics Assessment. In D. Zapata-Rivera (Chair), Measurement and Research Methodology. Communicating Assessment Results to Particular Audiences, New Orleans, LA.
    R Core Team. (2013). R: A language and environment for statistical computing[Computer software manual]. Vienna, Austria. Available from http://www.R-project.org/
    Ravand, H., Barati, H., & Widhiarso, W. (2013). Exploring Diagnostic Capacity of a High Stakes Reading Comprehension Test: A Pedagogical Demonstration. Iranian Journal of Language Testing, 3(1).
    Schwarzer, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.
    Shaw, D. S. (1984). Fraction subtraction errors: Case study. In K.K. Tatsuoka (Ed.), Analysis of error in fraction addition and subtraction problems (Final Report for Grant No. NIE-G-81-002, pp 40-51). Urbana: University of Illinois, Computer-Based Education Research Laboratory (CERL).
    Snow, R. E., & Lohman, D. F. (1989). Implications of cognitive psychology for educational measurement. In R. L. Linn (Ed.), Educational measurement (3rd ed., pp. 263–332). New York: Macmillan.
    Stiggins, R.J. (1991) Facing the challenges of a new era of educational assessment. Applied Measurement in Education, 4, 263-273.
    Sheehan, K.M. (1997). A tree-based approach to proficiency scaling and diagnostic assessment. Journal of Educational Measurement, 34(4), 333-352.
    Smith, J. P.Ⅲ(2002). The development of students’ knowledge of fractions and ratios. In B. Litwiller & G. Bright (Eds), Making Sense of Fractions, Ratios, and Proportions: 2000 Yearbook. (pp. 3-17). Reston, VA: NCTM.
    Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L., & Wray, J. (2010). Developing effective fractions instruction for kindergarten through 8th grade: A practice guide (NCEE 2010-4039). Washington, DC: National Center for Education Evaluation and Regional. Assistance, Institute of Education Sciences, U.S. Department of Education.
    Su, Y. L. (2013). Cognitive diagnostic analysis using hierarchically structured skills. Unpublished Doctoral dissertation, The University of Iowa, U.S.
    Tatsuoka, K. K. (1983). Rule-space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345-354.
    Tatsuoka, K. K. (1984). Analysis of errors in fraction addition and subtraction problems(Final Report for Grant No. NIE-G-81-002).Urbana, IL: University of Illinois, Computer-Based Education Research.
    Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconceptions in the pattern classification approach. Journal of Educational Statistics, 12, 55-73.
    Tatsuoka, K. K., Birenbaum, M., & Arnold, J. (1989). On the stability of students' rules of operation for solving arithmetic problems. Journal of Educational Measurement, 26(4), 351-361.
    Tatsuoka, K. K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In N. Frederiksen, R. Glaser, A. Lesgold, & M. Safto (Eds.), Monitoring skills and knowledge acquisition (pp. 453–488). Hillsdale, NJ: Erlbaum.
    Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis: A statistical pattern recognition and classification approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 327–359). Hillsdale NJ: Erlbaum.
    Tatsuoka, K. K., Corter, J. E., & Tatsuoka, C. (2004). Patterns of diagnosed mathematical content and process skills in TIMSS-R across a sample of 20 countries. American Educational Research Journal, 41(4), 901–926.
    Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological methods, 11(3), 287.
    Tseng, H. (2010). A linear compensatory counterpart to and generalization of the DINA model. Unpublished Doctoral dissertation, Columbia University, New York.
    Vanlehn, K. (1982). Bugs are not enough: Empirical studies of bugs, impasses and repairs in procedural skills. The Journal of Mathematical Behavior, 3(2), 3-71.
    Vanlehn, K. (1990). Mind bugs: the origins of procedural misconceptions. Cambridge, Mass.: MIT Press.
    von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report No. RR-05-16). Princeton, NJ: Educational Testing Service.
    Wu, H.H. (2002, September 3). Chapter2:Fractions (Draft). Retrieved on June 30, 2014, from http://www.math.berkeley.edu/~wu/
    Watanabe, T. (2012, October). Thinking about Learning and Teaching Sequences for the Addition and Subtraction of Fractions. In C. Bruce (Chair), Think Tank on the Addition and Subtraction of Fractions. Barrie, Ontario.
    Xu, X. & von Davier, M. (2006). Cognitive Diagnosis for NAEP proficiency data (ETS Research Report 06-08). Princeton, NJ: Educational Testing Service.
    Xu, X. & von Davier, M. (2008a). Linking in the general diagnostic model (ETS Research Report RP-08-08). Princeton, NJ: Educational Testing Service.
    Xu, X., & von Davier, M. (2008b). Fitting the structured general diagnostic model to NAEP data (Research Report RR-08-27). Princeton, NJ: Educational Testing Service.
    Yang, D.C. (2003). Teaching and learning number sense – An intervention study of fifth grade students in Taiwan. International Journal of Science and Mathematics Education, 1(1), 115-134.
    Young-Loveridge, J., Taylor, M., HU+00E0wera, N., & Sharma, S. (2006). Year 7–8 students’ solution strategies for a task involving addition of unlike fractions.Findings from the New Zealand Numeracy Development Projects, 67-86.
    Zhang, S. S., DeCarlo, L. T., & Ying, Z. (2013). Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models. arXiv preprint arXiv:1303.0426.

    下載圖示
    QR CODE