研究生: |
鍾昭國 Chung Chao Kuo |
---|---|
論文名稱: |
聯吡啶釕錯合物與卟啉化合物之性質與應用 |
指導教授: |
張一知
Chang, I-Jy |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 聯吡啶釕錯合物與卟啉化合物之性質與應用 |
英文關鍵詞: | Ru(bpy)3, TiO2 |
論文種類: | 學術論文 |
相關次數: | 點閱:121 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們合成了三種釕錯合物,並於其中兩個聯吡啶取代為尾端帶有羧酸基的長碳鏈(碳數分別為七、十二、十七)官能基,將其分別以化學鍵結於 TiO2 奈米粒子上,同時,也藉由另外兩組實驗來觀察光引發電子轉移的反應:一組是將未經任何修飾過的 [Ru(bpy)3]2+ 以物理吸附的方式,吸附在TiO2 奈米粒子上;另一組則是利用經電子接收體修飾的 [Ru(bpy)3]2+ 錯合物,於NaPi buffer溶液中。將三組實驗皆測量生命期後,實驗結果顯示具長碳鏈的 [Ru(bpy)3]2+ 錯合物經照光之後,Ru上的電子還來不及傳遞到其利用羧酸基以共價鍵鍵結的TiO2 上,其激發態就先被位於旁邊沒形成化學鍵結的TiO2 給淬息 (quench) 掉了,也就是說,在進行單分子電子轉移反應前,會先進行類似雙分子間的淬息反應。
TiO2 nanorod可用較容易的方法成功製作出來,但是,所製備出來的TiO2 nanorods films在測量吸收光譜時,由於直徑不夠小的因素,導致此種films具有非常嚴重的scattering light效應。
我們也試圖利用含多拉電子基電子接受體 (Cl6O2MV2+) 對 [Ru(bpy)3]2+ 來進行淬息反應,但由於此分子無法產生很好的共振效果來穩定整個系統,導致Cl6O2MV2+ 對 Ru(bpy)32+ 的淬息速率 (kq) 無法比未經過取代的 MV2+ 之 kq 有增快的效果。
氮碳異位卟啉化合物在CH3Cl中進行照光反應,可藉由不同的照光方式、動力學同位素效應以及GC-MS來了解真正的光化學反應機制,也可利用UV-vis吸收光譜來簡單地測量其酸鹼度。
Three Ruthenium trisbipyridine complexes have been synthesized. Two of the bipyridine ligands have been substituted by two polymethylene chain with terminal carboxyl acid groups ((CH2)nCOOH:n = 7, 12, and 17) at the 4-4’ position of the bipyridine.
These complexes have been covalently bound to TiO2 nanoparticles via carboxylate group. Femtosecond laser spectroscopy were used to investigate the photoinduced electron-transfer reaction between the Ruthenium complexes and the TiO2 nanopartilces.
The electron-transfer rates are 3.85×1012、4.17×1012、4.76×1012 s-1 for [Ru(d7cbpy)2(bpy)]2+、[Ru(d12cbpy)2(bpy)]2+、[Ru(d17cbpy)2(bpy)]2+; respectively. The lifetime of physically absorbed [Ru(bpy3)]2+ on TiO2 surface is 0.26 ps. These sub-picosecond rates are similar in all four complexes indicating a similar electron transfer pathway. Compare to the electron transfer rates in solution at comparable distance, the rates are too fast to transfer through bonds. We conclude that the electron transfer to the nearest TiO2 nanoparticle, either through bond or by physical contact.
The TiO2 nanorods has been made successfully by useing anodic aluminum oxide membrane as template. The length of the rods are within 500~1000 nm, and the diameter of the rods are in the range of 160~260 nm.
A methyl viologen based electron acceptor substituted with rich electron-withdrawing groups, Cl6O2MV2+, were synthesis. The redox potential of Cl6O2MV2+ is -0.06 V, the bimolecular quench rate constant, kq, of the compound and [Ru(bpy3)]2+ is 1.63×108 M-1s-1.
The photochemistry of N-confused porphyrin in the CHCl3 can be understood through various studies, such as irradiating methods, kinetic isotope effect, and the GC/EI-Mass. The pKa of N-confused porphyrin can be measured by UV-Vis spectrum to be 8.11~8.33.
Reference
1) Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London, 1992.
2) Pan, L. P.; Hibdon, S.; Liu, R-Q.; Durham, B.; Miller, F. Biochemistry, 1993, 32, 8492.
3) Winkler, J. R.; Gray, H. B. Chem. Rev. 1992, 92, 369.
4) Tsai, T.-C.; Chang, I.-J. J. Am. Chem. Soc. 1998, 120, 227.
5) 蔡東洲, 國立台灣師範大學化學研究所碩士論文, 1997年
6) Rutherford, T. J.; Keene, F. R. Inorg. Chem. 1997, 36, 2872.
7) Grätzel, M. Natrue 2001, 414, 338.
8) Honda, K.; Fujishima, A. Nature 1972, 238, 37.
9) Tufts, B. J. Nature 1987, 326, 681.
10) Heller, A. Acc. Chem. Res. 1981, 14, 154.
11) Tributsch, H.; Bennet, J. C. J. Electroanal. Chem. 1977, 81, 97.
12) Bard, A. J. Science 1980, 207, 139.
13) O’Regan, B.; Grätzel, M. Natrue (Landon) 1991, 353, 737.
14) Nazeeruddin, Md. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.;
Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
15) (a) Argazzi, R.; Bignozzi, C. A.; Heimer, T. A.; Castellano, F. N.;
Meyer, G. J. J. Phys. Chem. B 1997, 101, 2591. (b) Kelly, C. A.; Farzad, F.; Thompson, D. W.; Meyer, G. J. Langmuir 1999, 15, 971. (c) Gholamkhass, B.; Koike, K.; Negishi, N.; Hori, H.; Takeuchi, K. Inorg. Chem. 2001, 40, 756. (d) Renouard, T.; Grätzel, M. Tetrahedron 2001, 57, 8145. (e) Hara, K.; Sugihara, H.; Tachibana, Y.; Islam, A.; Yanagida, M.; Sayama, K.; Arakawa, H. Langmuir 2001, 17, 5992.
16) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.;
Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597.
17) Huber, R.; Spörlein, S.; Moser, J. E.; Grätzel, M.; Wachtveitl, J. J.
Phys. Chem. B 2000, 104, 8995.
18) Ehret, A.; Stuhl, L.; Spitler, M. T. J. Phys. Chem. B 2001, 105,
9960.
19) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.;
Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Soc. Chem. 2001, 123, 1613.
20) Nazeeruddin, Md. K.; Kalyanasundaram, K.; Grätzel, M. Inorg.
Synth. 1998, 32, 181.
21) Barbè, C.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.;
Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.
22) Tachibana, Y.; Moser, J. E.; Grätzel, M.; Klug, D. R.; Durrant, J. R.
J. Phys. Chem. B 1996, 100, 2056.
23) Hannappel, T.; Burfeindt, B.; Storck, W.; Willig, F. J. Phys. Chem. B
1997, 101, 6799.
24) Hilgendorff, M.; Sundström, V. J. Phys. Chem B 1998, 102, 10505.
25) Burfeindt, B.; Hannappel, T.; Storck, W.; Willig, F. J. Phys. Chem.
1996, 100, 16463.
26) Wachtveitl, J.; Hyber, R.; Spörlein, S.; Moser, J. E.; Grätzel, M. J.
Photoenerg. 1999, 1, 153.
27) Damrauer, N. H.; Cerullo, G.; Yeh, A.; Boussie, T. R.; Shank, C. V.;
McCusker, J. K. Science 1997, 275, 54.
28) Tachibana, Y.; Haque, S. A.; Mercer, I. P.; Durrant, J. R.; Klug, D.
R. J. Phys. Chem. B 2000, 104, 1198.
29) Fessenden, R. W.; Kamat, P. V. J. Phys. Chem. 1995, 99, 12902.
30) Haque, S. A.; Tachibana, Y.; Klug, D. R.; Durrant, J. R. J. Phys.
Chem. B 1998, 92, 1745.
31) Sengupta, A.; Jiang, B.; Mandal, K. C.; Zhang, J. Z. J. Phys. Chem.
B 1999, 103, 3128.
32) Cherepy, N. J.; Smestad, G. P.; Grätzel, M.; Zhang, J. Z. J. Phys.
Chem. B 1997, 101, 9342.
33) Haque, S. A.; Tachibana, Y.; Willis, R. L.; Moser, J. E.; Grätzel, M.;
Klug, D. R.; Durrant, J. R. J. Phys. Chem. B 2000, 104, 538.
34) Opperman, K. A.; Mecklenburg, S. L.; Meyer, T. J. Inorg. Chem. 1994, 33, 5295
35) Rillema, D. P.; Blanton, C. B.; Shaver, R. J.; Jackman, D. C.; Boldaji, M.; Bundy, S.; Worl, L. A.; Meyer, T. J. Inorg. Chem. 1992, 31, 1600
36) Dupray, M. L.; Meyer, T. J. Inorg. Chem. 1996, 35, 6299
37) Margerum, L. D.; Murray, R. W.; Meyer, T. J. J. Phys. Chem. 1986, 90, 728.
38) Kober, E. M.; Caspar, J. V.; Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1988, 27, 4587.
39) Barqawi, K. R.; Llobet, A.; Meyer, T. J.; J. Am. Chem. Soc. 1988, 110, 7751.
40) Mecklenburg, S. L.; Peek, B. M.; Schoonover, J. R.; McCafferty, D. G.; Wall, C. G.; Erickson, B. W.; Meyer, T. J. J. Am. Chem. Soc. 1993, 115, 5479.
41) Allen, G. H.; White, R. P.; Rillema, D. P.; Meyer, T. J. J. Am. Chem. Soc. 1984, 106, 2613.
42) Furue, M.; Maruyama, K.; Kanematsu, Y.; Kushida, T.; Kamachi, M. Coordination Chemistry Reviews 1994, 132, 201-208.
43) Seiler, M.; Durr, H.; Willner, I.; Joselevich, E.; Doron, A.; Stoddart, J. F. J. Am. Chem. Soc. 1994, 116, 3399.
44) Leasure, R. M.; Kajita, T.; Meyer, T. J. Inorg. Chem. 1996, 35, 5962.
45) Balzani, V.; Credi, A.; Venturi, M. Coordination Chemistry Reviews 1998, 171, 3.
46) Chen, P. Y.; Palmer, R. A.; Meyer, T. J. J. Phys. Chem. a 1998, 102, 3042.
47) Hackett, J. W.; Turro, C. Inorg. Chem. 1998, 37, 2039.
48) Warren, J. T.; Johnston, D. H.; Turro, C. Inorganic Chemistry Communications 1999, 2, 354.
49) Uddin, M. J.; Yoshimura, A.; Ohno, T. Bulletin of the Chemical Society of Japan 1999, 72, 989.
50) Luo, J.; Reddy, K. B.; Salameh, A. S.; Wishart, J. F.; Isied, S. S. Inorg. Chem. 2000, 39, 2321.
51) Hu, Y. Z.; Tsukiji, S.; Shinkai, S.; Oishi, S.; Hamachi, I. J. Am. Chem. Soc. 2000, 122, 241
52) Lahav, M.; Heleg-Shabtai, V.; Wasserman, J.; Katz, E.; Willner, I.; Durr, H.; Hu, Y. Z.; Bossmann, S. H. J. Am. Chem. Soc. 2000, 122, 11480.
53) Mallouk T. E. J. Am. Chem. Soc. 1994, 116, 4786.
54) Gray, H. B.; Chang, I J.; Winkler, J. R. J. Am. Chem. Soc. 1991,
113, 7056.
55) Gray, H. B.; Chang, I J.; Winkler, J. R.; Mines, G. A.; Bjerrum, M.
J.; Hill, M. G.; Casimiro, D. R. J. Am. Chem. Soc. 1996, 118, 1961.
56) Cotter, J. L.; Kosower, E. M. J. Am. Chem. SOC. 1964, 86, 5524.
57) Wilkinson G. J. Chem. Soc. Dalton 1973, 205.
58) Mucgrave, W. K. R.; Lomas, D.; Chambers, R. D. Tetrahedron.
1968, 24, 5633.
59) Galoppini, E.; Guo, W.; Zhang, W.; Hoertz, P. G.; Qu, P.; Meyer,
G. J. J. Am. Chem. Soc. 2002, 124, 7801.
60) 陳喧應, 國立台灣師範大學化學研究所碩士論文, 2001年
61) Park, I. S.; Jang, S. R.; Hong, J. S.; Vittal, R.; Kim, K. J. Chem.
Mater. 2003, 15, 4633.
Reference
1) Furuta, H.; Asano, T.; Ogawa, T. J. Am. Chem. Soc. 1994, 116, 767.
2) Grazynski, L. L.; Chmielewski, P. J. J. Chem. Soc.Perkin Trans. 2 1995, 503.
3) Modarelli, D. A.; Ziegler, C. J.; Rajesh, C. S.; Belair, J. P. J. Phys. Chem. A 2002, 106, 6445.
4) Henry, E.R.; Hofrichter, J. Methods in Enzymology 1992, 210, 129.
5) Maeder, M.; Zuberbuhler, A. Anal. Chem. 1990, 62, 2220.
6) Furuta, H.; Ishizuka, T.; Osuka, A.; Ogawa, T. J. Am. Chem. Soc. 1999, 121, 2945.
7) Pushpan, S. K.; Srinivasan, A.; Anand, V. G.; Venkatraman, S.; Chandrashekar, T. K.; Joshi, B. S.; Roy, R.; Furuta, H. J. Am. Chem. Soc. 2001, 123, 5138.
8) Shin, J.-Y.; Furuta, H.; Yoza, K.; Igarashi, S.; Osuka, A. J. Am. Chem. Soc. 2001, 123, 7190.
9) Furuta, H.; Ishizuka, T.; Osuka, A.; Dejima, H.; Nakagawa, H.; Ishikawa, Y. J. Am. Chem. Soc. 2001, 123, 6207.
10) Furuta, H.; Maeda, H.; Osuka, A. J. Org. Chem. 2000, 65, 4222.
11) Furuta, H.; Maeda, H.; Osuka, A. J. Org. Chem. 2001, 66, 8563.
12) Geier, G. R., III; Lindsey, J. S. J. Org. Chem. 1999, 64, 1596.
13) Geier, G. R., III; Haynes, D. M.; Lindsey, J. S. Org. Lett. 1999, 1, 1455.
14) Furuta, H.; Maeda, H.; Osuka, A. Org. Lett. 2002, 4, 181.
15) Furuta, H.; Ishizuka, T.; Osuka, A. J. Am. Chem. Soc. 2002, 124, 5622.
16) Hung, C.-H.; Bohle, D. S.; Chen, W.-C. Inorg. Chem. 2002, 41, 3334.
17) Furuta, H.; Ogawa, T.; Uwatoko, Y.; Araki, K. Inorg. Chem. 1999, 38, 2676.