研究生: |
邱繼成 Chiu, Chi-Cheng |
---|---|
論文名稱: |
利用Budyko framework評估現況與氣候變遷情境下台灣各流域水資源之變化 Assessment on the Variation of Water Resources for Watersheds in Taiwan under Current and Future Climate Scenarios via the Budyko Framework |
指導教授: |
李宗祐
Lee, Tsung-Yu |
口試委員: | 許少瑜 陳佳正 羅敏輝 李宗祐 |
口試日期: | 2021/07/06 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 水資源管理 、蒸發散量 、集群分析 、水文氣候 |
英文關鍵詞: | Water resource management, evapotranspiration, Cluster analysis, hydroclimate |
DOI URL: | http://doi.org/10.6345/NTNU202100752 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在氣候變遷的壓力下,預估水資源的變化以利水資源管理顯得格外重要,流域水資源的變化可以透過了解一個流域的降雨、蒸發散與流量的變化特性及趨勢而得。因此本研究使用TCCIP所產製0.05°×0.05°網格雨量與溫度資料(1960-2017年),以及水利署監測(1960-2017年)與台電公司紀錄(1970-2017年)的歷年流量資料作為研究資料,分析全台107個流域的雨量、流量、蒸發散量、逕流係數等因子的變化趨勢,並建立集水區年時間尺度之雨量─流量線性關係式(年流量=a×年雨量+b),此外利用TCCIP產製至世紀末的網格雨量及溫度資料,分析在AR5的34個GCM及4個RCP情境下,各流域於Budyko空間中的移動角度與向量長度並進行集群分析。結果顯示,全臺灣各集水區年流量在空間及時間上無顯著變化趨勢,然對應流量資料之年雨量卻普遍呈上升趨勢,並導致共有21個集水區的逕流係數達顯著下降的趨勢並主要集中在北區與南區,而逕流係數顯著上升的區域則集中於中區及東區;所有集水區的雨量與流量均呈現非常好的線性關係且達到顯著,R2值大於0.7的測站數高達71個,然而有25個流域發生流量高於雨量的狀況。在氣候變遷情境下全台流域於Budyko空間的變化可歸類於三種類型:集群1的流域共11個,該類流域在未來潛在蒸發散量增加的幅度最小,但年雨量的增幅最大,推論為最有可能遭遇洪患問題之流域;集群2的流域為27個,在未來其潛在蒸發散量將大幅增加,加上年雨量減少,推論將面臨嚴重水資源不足的問題;而集群3流域數量為37個,雨量與潛在蒸發散量的變化量介於前二者之間,但雨量增加量仍小於潛在蒸發散量的增加量,可能面臨水資源降低的問題。而本研究結果預期可作為未來全台各流域水資源管理的參考依據。
Under the stress induced by climate change, it is especially vital to predict the changes of water resources in the future. The changes of rainfall, evapotranspiration, and streamflow in the catchments are the prerequisite knowledge of water resources management. This study data includes the 0.05°×0.05° rainfall and temperature raster data, produced by TCCIP (1960-2017), and streamflow data, provided by Water Resource Agency (1960-2017) and Taipower (1970-2017). We analyze the trends of historical rainfall, streamflow, evaportranspirtaiton, and runoff coefficient for the 107 catchments in Taiwan. Rainfall-runoff relationships, i.e. annual runoff = a × annual rainfall + b, were also constructed. With the rainfall and temperature data til the end of the century provided by TCCIP, the movement of vector and direction of each catchment in Budyko space are calculated and clustered under the future climate senarios, incliding projections of 34 GCM for 4 RCP scenarios in AR5. The results show that there are no spatial and temporal trends for the annual runoff but there is overall increasing trend for the annual rainfall, leading to significant decreasing trend in runoff coefficient at 21 watersheds, mainly in Northern and Southern Taiwan. Every watershed has a very good rainfall-runoff relationship, and there are 71 watersheds where their relationships having R2 values greater than 0.7. However, the annual runoff data in 25 catchments is higher than the annual rainfall. The movement in the Budyko space of all catchments can be classified into three clusters. Cluster 1 of 11 catchments may suffer from flood in the future because it has the minimum increase in potential evapotranspiration but the maximum increase in rainfall among the three clusters. Cluster 2 of 27 catchments may face serious water shortage problems, because its potential evapotranspiration will increase significantly and the annual rainfall will decrease in the future. Cluster 3 of 37 catchments may face the problem of water resources reduction, because it has the second highest increase in rainfall and potential evapotranspiration among the three clusters, but the increase in rainfall is still less than increase in potential evapotranspiration. The results of this study could be a reference for the future water resources management in Taiwan.
王士銘(2014):《利用有限氣象參數評估蒸發散量之研究》。臺南:國立 成功大學資源工程學系學位論文。
王義傑(2016):《氣候變遷下台南地區水資源之衝擊與調適》。桃園:國立中央大學土木工程研究所碩士論文
王鎮宇(2017):《土地利用變遷與氣候變遷對2030年 鳳山溪流域水文系統之影響》。桃園:國立中央大學土木工程研究所碩士論文。
吳專誠(2009):《 離槽水庫集水區降雨與水質各因子間關係之研究-以鯉魚潭水庫為例》。台中:國立中興大學水土保持學系所碩士論文。
宋健豪、廖學誠(2018):〈應用趨勢分析探討氣候變遷下太麻里溪流域的水文變化〉,《地理研究》,68:49-72。
李宗祐、黃誌川與邱永嘉(2016)。105年度評估水文條件改變及河床-河水交互作用對七家灣溪河川流量與溪流棲地之影響。雪霸國家公園管理處委託研究成果報告(編號:10514)。
李宛諭(2009):《上水道於城市近代化中的角色變遷--以台南水道發展脈絡與轉型為個案研究》。臺北:臺灣大學建築與城鄉研究所學位論文。
李庭鵑(2007):《氣候變遷衝擊河川水質永續管理之長期預警機制》。臺北:臺灣大學生物環境系統工程學研究所學位論文。
翁叔平、楊承道(2012),台灣地區月降雨及溫度 1 公里網格資料庫之建立(1960-2009)及其在近未來(2015-2039)的氣候推估應用,大氣科學,第 40 期,349-370。
翁叔平、楊承道(2018),臺灣地區日降雨網格化資料庫(1960~2015)之建置與驗證,台灣水利,第66卷(第4期),33-52。
高雨瑄、許少華、汪中和與彭宗仁(2007):〈花蓮溪流域鳳林地區地表地下水之氫氧同位素時空分布特徵〉,《農業工程學報》, 53(2):22-30。
張智欽(2000):〈水文環境變遷與地下水位變化之關係-兼論員山地區缺水問題〉,《宜蘭技術學報》,(4):147-161.。
張萬烽(2016):〈學習障礙學生自我概念發展之集群分析〉,《特殊教育發展期刊》,(62):65-78.。
許晃雄等(2017),臺灣氣候變遷科學報告2017第一冊物理現象與機制,國家災害防救科技中心。
許晃雄等(2017),臺灣氣候變遷科學報告2017第二冊衝擊與調適面向,國家災害防救科技中心。
陳韻如(2006):《永續性河川水質管理系統之發展》。臺北:臺灣大學生物環境系統工程學研究所學位論文。
游孟楷 (2017):《無母數方法與統計學習應用於水文氣候分析及地下水位預報》。台中:中興大學土木工程學系所學位論文。
童裕翔、陳正達、劉俊志、陳永明(2018)。統計降尺度(日)資料評估與應用。新北:國家災害防救科技中心技術報告,NCDR 107-T19。
經濟部水利署南區水資源局(2010):曾文水庫放水與烏山頭水庫進出水量關係分析研究。
葉信富、林宏奕、鄭詠心、李哲瑋與李振誥(2015):〈花蓮溪流域地下水補注特性之研究〉,《臺灣鑛業》,67(2):41-53.。
葉信富、陳進發與李振誥(2005):〈潛勢能蒸發散經驗公式之最佳化比較〉,《農業工程學報》,51(1): 27-37。
葉信富、葉振峰、李振誥(2016):〈以 Mann-Kendall 及 Theil-Sen 檢定法評估臺灣地區長期河川流量時空趨勢變化〉,《中華水土保持學報》,第47卷2期:73-83。
謝旻希(2014):《區域地下水系統水流數值模式率定方法之建立與應用── 以花蓮溪流域縱谷區為例》。臺北:臺灣大學土木工程學研究所學位論文
臺灣氣候變遷推估資訊與調適知識平台,https://tccip.ncdr.nat.gov.tw/(2021/06/20 瀏覽)
Adam, J. C., Clark, E. A., Lettenmaier, D. P., & Wood, E. F. (2006). Correction of global precipitation products for orographic effects. Journal of Climate, 19(1), 15-38.
Almorox, J. Y., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9-10), 1529-1535.
Bai, P., Liu, X., Zhang, D., & Liu, C. (2020). Estimation of the Budyko model parameter for small basins in China. Hydrological Processes, 34(1), 125-138.
Bakirci, K. (2009). Models of solar radiation with hours of bright sunshine: a review. Renewable and Sustainable Energy Reviews, 13(9), 2580-2588.
Budyko, M. I. (1958). The heat balance of the earth’s surface, US Dept. of Commerce. Weather Bureau, Washington, DC, USA.
Budyko, M. I., Miller, D. H., & Miller, D. H. (1974). Climate and life (Vol. 508). New York: Academic press.
Caporusso, N. B., & Rolim, G. D. S. (2015). Reference evapotranspiration models using different time scales in the Jaboticabal region of São Paulo, Brazil. Acta Scientiarum. Agronomy, 37(1), 1-9.
Chiu, Y.C., Lee T.Y., Hsu, S.Y., Liao, L.Y., 2020. The effects of hydrological conditions and bioactivities on the spatial and temporal variations of streambed hydraulic characteristics at the subtropical alpine catchment. Journal of Hydrology, 584, 124665
Choudhury, B. (1999). Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216(1-2), 99-110.
Donohue, R., Roderick, M., & McVicar, T. R. (2007). On the importance of including vegetation dynamics in Budyko's hydrological model.
Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M., & Haggag, M. (2019). A new Budyko framework extension using time series SARIMAX model. Journal of hydrology, 570, 827-838.
Fu, B. P. (1981). On the calculation of the evaporation from land surface. Sci. Atmos. Sin, 5(1), 23-31.
Gan, G., Liu, Y., & Sun, G. (2020). Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Science Reviews, 103451.
Gosling, S. N., & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climatic Change, 134(3), 371-385.
Greve, P., Gudmundsson, L., Orlowsky, B., & Seneviratne, S. I. (2015). Introducing a probabilistic Budyko framework. Geophysical Research Letters, 42(7), 2261-2269.
Hasenmueller, E. A., & Criss, R. E. (2013). Water balance estimates of evapotranspiration rates in areas with varying land use. Evapotranspiration-An Overview, 1-22.
Heidari, H., Arabi, M., Warziniack, T., & Kao, S. C. (2020). Assessing shifts in regional hydroclimatic conditions of US river basins in response to climate change over the 21st century. Earth's Future, 8(10), e2020EF001657.
Huo, J., Liu, C., Yu, X., Jia, G., & Chen, L. (2021). Effects of watershed char and climate variables on annual runoff in different climatic zones in China. Science of The Total Environment, 754, 142157.
Jaramillo, F., & Destouni, G. (2014). Developing water change spectra and distinguishing change drivers worldwide. Geophysical Research Letters, 41(23), 8377-8386.
Kendall, M.G. 1975. Rank Correlation Methods, 4th edition, Charles Griffin, London.
Lee, C. H., & Yeh, H. F. (2019). Impact of climate change and human activities on streamflow variations based on the Budyko framework. Water, 11(10), 2001.
Li, D., Pan, M., Cong, Z., Zhang, L., & Wood, E. (2013). Vegetation control on water and energy balance within the Budyko framework. Water Resources Research, 49(2), 969-976.
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259.
Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., ... & Zwiers, F. W. (2010). Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties.
Mezentsev, V. S. (1955). More on the calculation of average total evaporation. Meteorol. Gidrol, 5(2426.28).
Milly, P. C. D. (1993). An analytic solution of the stochastic storage problem applicable to soil water. Water Resources Research, 29(11), 3755-3758.
Ning, T., Li, Z., Feng, Q., Liu, W., & Li, Z. (2018). Comparison of the effectiveness of four Budyko-based methods in attributing long-term changes in actual evapotranspiration. Scientific reports, 8(1), 1-10.
Ol’Dekop, E. M. (1911). On evaporation from the surface of river basins. Transactions on meteorological observations, 4, 200.
Piemontese, L., Fetzer, I., Rockström, J., & Jaramillo, F. (2019). Future hydroclimatic impacts on Africa: Beyond the Paris Agreement. Earth's Future, 7(7), 748-761.
Pike, J. G. (1964). The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology, 2(2), 116-123.
Ranjan, A., & Denis, D. M. (2018). Estimation of runoff generating capacity of a small watershed. The Pharma Innovation, 7(5, Part C), 148.
Schreiber, P. (1904). Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Z. Meteorol, 21(10), 441-452.
Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63: 1379-1389.
Shiau, J. T., & Chiu, Y. F. (2019). Wavelet-Based Detection of Time-Frequency Changes for Monthly Rainfall and SPI Series in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55(4), 657-667., P. S., Yang, T. C., & Wu, C. K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology, 260(1-4), 161-175.
Theil, H. (1950). A rank invariant method of linear and polynomial regression analysis, Part 3. Netherlands Akademie van Wettenschappen, Proceedings, 53: 1397-1412.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
Trancoso, R., Larsen, J. R., McAlpine, C., McVicar, T. R., & Phinn, S. (2016). Linking the Budyko framework and the Dunne diagram. Journal of Hydrology, 535, 581-597.
Tsai, A. Y., & Huang, W. C. (2011). Impact of climate change on water resources in Taiwan. Terr. Atmos. Ocean. Sci., 22, 507-519.
Turc, L. (1954). The water balance of soils. Relation between precipitation, evaporation and flow. Ann. Agron, 5, 491-569.
UN,(2020).Water and Climate Change,World Water Development Report.
Valipour, M., Sefidkouhi, M. A. G., & Raeini, M. (2017). Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management, 180, 50-60.
Van der Velde, Y., Vercauteren, N., Jaramillo, F., Dekker, S. C., Destouni, G., & Lyon, S. W. (2014). Exploring hydroclimatic change disparity via the Budyko framework. Hydrological Processes, 28(13), 4110-4118.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., ... & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change, 109(1), 5-31.
Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. science, 289(5477), 284-288.
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., ... & Wilson, J. S. (2010). The future of hydrology An evolving science for a changing world. Water Resources Research, 46(5).
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., ... & Wilson, J. S. (2010). The future of hydrology: An evolving science for a changing world. Water Resources Research, 46(5).
Wang, C., Wang, S., Fu, B., & Zhang, L. (2016). Advances in hydrological modelling with the Budyko framework: A review. Progress in Physical Geography, 40(3), 409-430.
Xiong, L., & Guo, S. (2012). Appraisal of Budyko formula in calculating long‐term water balance in humid watersheds of southern China. Hydrological processes, 26(9), 1370-1378.
Xu, X., Liu, W., Scanlon, B. R., Zhang, L., & Pan, M. (2013). Local and global factors controlling water‐energy balances within the Budyko framework. Geophysical Research Letters, 40(23), 6123-6129.
Yang, D., Shao, W., Yeh, P. J. F., Yang, H., Kanae, S., & Oki, T. (2009). Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resources Research, 45(7).
Yang, D., Sun, F., Liu, Z., Cong, Z., Ni, G., & Lei, Z. (2007). Analyzing spatial and temporal variability of annual water‐energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resources Research, 43(4).
Yang, H., Yang, D., Lei, Z., & Sun, F. (2008). New analytical derivation of the mean annual water‐energy balance equation. Water resources research, 44(3).
Yu, P. S., Yang, T. C., & Wu, C. K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology, 260(1-4), 161-175.
Zhang, L., Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water resources research, 37(3), 701-708.
Zhang, L., Potter, N., Hickel, K., Zhang, Y., & Shao, Q. (2008). Water balance modeling over variable time scales based on the Budyko framework–Model development and testing. Journal of Hydrology, 360(1-4), 117-131.
Zhang, L., Zhao, F., Chen, Y., & Dixon, R. N. (2011). Estimating effects of plantation expansion and climate variability on streamflow for catchments in Australia. Water Resources Research, 47(12).
Zhang, Y., Leuning, R., Chiew, F. H., Wang, E., Zhang, L., Liu, C., ... & Jung, M. (2012). Decadal trends in evaporation from global energy and water balances. Journal of Hydrometeorology, 13(1), 379-391.