簡易檢索 / 詳目顯示

研究生: 伍開成
Kai Cheng Wu
論文名稱: 硫化鎘(CdS)奈米粒子之製備與其特性之探討
Preparation and Characterizations of CdS Nanoparticles
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 79
中文關鍵詞: 硫化格奈米粒子
英文關鍵詞: CdS nanoparticles
論文種類: 學術論文
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文以研究硫化鎘(CdS)半導體奈米粒子之合成、光學性質與粒子在基材上分佈的情形為主。實驗內容包括兩部份,首先對奈米粒子進行光照蝕刻,期望能控制奈米粒子的尺寸單一性;以及藉由電化學方法在基材上(玻璃碳電極、高溫取向熱解石墨)沈積 CdS奈米粒子。經由控制電鍍的條件,合成出均勻度佳、分散性好的奈米粒子。此法的優點包含高產量、低成本以及易操作等特性。
    在光照蝕刻部份,我們以非錯合性溶劑反應系統合成出 CdS奈米粒子,利用白光照射粒子進行蝕刻;經由改變光照時間,探討粒子尺寸的變化。從UV-Vis光譜儀,發現蝕刻後的粒子尺寸會隨著光照時間的增加而變小,在吸收光譜上呈現藍位移。此外,藉由公式估算及AFM可獲知粒子尺寸大小與在基材表面的分布情形,發現粒子粒徑經蝕刻後有明顯變小的現象。
    在電化學部份,我們利用定電位的方式,電鍍CdS奈米粒子。根據實驗結果,從AFM及SEM的影像中,發現奈米粒子的大小與電鍍時間成正比;並利用XPS確認以定電位的方式能成功合成出CdS奈米粒子。

    Abstract
    In this study, the optical properties and morphology of CdS semiconductor nanoparticles on the substrate are investigated. There are two experimental parts for preparing CdS nanoparticles; “top-down” and “bottom-up”. For the first part, we examined the characterization of CdS semiconductor nanoparticles prepared by the size-selective photoetching technique; in the second part, CdS nanoparticles were deposited on the GC (glassy carbon) or HOPG (highly oriented pyrolytic graphite) by electrochemical/chemical synthesis. The latter has not only higher yield but also lower cost and better control. We also hope to get a uniform and good quantity of nanoparticles by changing the synthesis conditions.
    In the size-selective photoetching, CdS nanoparticle were prepared by the noncoordinating solvent system and the different sizes were obtained by changing the irradiation time with the monochromatic light. It is a well-known fact that semiconductors exhibit quantum size effects when their size is smaller than the bulk exciton radius as a result of the spatial confinement of the charge carriers. This effect caused the shift of the onset of UV-Vis absorption to higher energy (blue shift). The size-selective properties were characterized by AFM measurements and were compared with Henglein’s empirical equation.
    We also used the electrochemical/chemical method to prepare the CdS nanoparticles at a constant potential. AFM and SEM images showed that the sizes of the nanoparticles depend on the depositing time. The Cd 3d and S 2p XPS peaks indicate the presence of CdS nanoparticles on the surface.

    目錄 中文摘要………………………………………………………………..Ⅰ English abstract……………………………………………....................Ⅱ 謝誌……………………………………………………………………. Ⅲ 目錄………………………………………………………......................Ⅴ 圖目………………………………………………………………...….. Ⅷ 表目………………………………………………………………….....ⅩⅣ 第一章 諸論 1.1 半導體奈米科技……………………………………………...1 1.2 奈米材料…………………………………………………..….3 1.2.1 奈米材料的分類…………………………………..….4 1.2.2 半導體奈米材料……………………………………...5 1.2.3 CdS奈米粒子之研究…………………..….................7 第二章 理論基礎 2.1 奈米材料的基本理論 2.1.1 量子力學的發展…………………….……………...10 2.1.2 盒中粒子的理論…………………………………....11 2.1.3 量子侷限效應……………………………………....13 2.2 奈米粒子的特性 2.2.1 表面效應……………………………………………14 2.2.2 體積效應………………………………………..…..14 2.2.3 交互作用力…………………………………….…...14 2.2.4 小尺寸效應……………………………………..…..15 第三章 光照蝕刻(Photoetching) 3.1 文獻探討 3.1.1 光照蝕刻…………………………………………...16 3.1.2 製備CdS奈米粒子……………………..................18 3.1.3 以UV-Vis評估奈米粒子的方法………………….21 3.2 研究動機…………………………………………………….25 3.3 實驗設備 3.3.1 實驗藥品…...............................................................26 3.3.2 實驗設備…………………………………………...26 3.3.3 實驗方法及步驟…………………………………...27 3.4 結果與討論 3.4.1 CdS 奈米粒子的光學性質………………………..30 3.4.2 CdS 奈米粒子size的變化.……………………….35 3.5 結論………………………………………………………....38 第四章 電鍍CdS奈米粒子 4.1 文獻探討 4.1.1 一般常見的電鍍模式……………………………..39 4.1.2 模版的介紹………………………………………..42 4.1.3 以硬性模版當基材的研究………………………..44 4.2 研究動機…………………………………………………….47 4.3 實驗設備 4.3.1 實驗藥品…………………………………………..48 4.3.2 實驗設備…………………………………………..48 4.3.3 實驗方法及步驟…………………………………..49 4.4 結果與討論 4.4.1 以GC當基材……………………………………..51 4.4.2 以HOPG當基材………………………………….60 4.5 結論………………………………………………………….66 第五章 總結………………………………………………………..67 未來展望………………………………………………………………68 參考文獻……………………………………………………………....69 附錄 1 原子力顯微鏡(Atomic Force Microscope,AFM).....................75 2 化學電子分析儀(X-ray Photoelectron Spectroscopy,XPS)….78

    參考文獻

    (1) L. E. Brus;A. L. Efros;T. J. Itoh. Lumin. 1996, 70, R7-R8.
    (2) P. Ball. Nature. 2001, 414, 142.
    (3) S. A. Majetich;Y. Jin. Science. 1999, 284, 470.
    (4) C. H. Back;R. Allenspach;W. Weber;S. S. P.;D. Waller;
    E. L. Garwin;H. C. Siegmann. Science.1999, 285, 864.
    (5) Z. Yong;Ji. Qingmin;M. Mitsutoshi;K. Shoko;S. Toshimi
    Chem. Mater. 2006, 18, 403.
    (6) Z. A. Peng;X. Peng;J. Am. Chem. Soc. 2002, 124, 3343.
    (7) K. Akamastu;T. Tsuruoka;H. Nawafune. J. Am. Chem. Soc.
    2005, 127, 1634.
    (8) Q. H. Wei;C. Bechinger;P. Leiderer. Science. 2000, 287, 265.
    (9) E. W. Wong;P. E. Sheehan;C. M. Leiber. Science. 1997, 277,
    1971
    (10) E. A. Meulenkamp. J. Phys. Chem. B. 1998, 102, 7764.
    (11) R. M. Penner. Acc.Chem.Res. 2000, 33, 78.
    (12) Q. Li;M. A. Brown;J. C. Hemminger;R. M. Penner. Chem
    Mater. 2006, 18, 3432.
    (13) L. Ouyang;K. N. Maher;Y. C. Liang;J. M. Carty;H. Park.
    J. Am. Chem. Soc. 2007, 129, 133.
    (14) A. P. Alivisatos. J. Phys. Chem. 1996, 100, 13226.
    (15) A. N. Goldstein;C. M. Echer;A. P. Alivisatos. Science. 1992,
    256, 1425.
    (16) K. P. Jain;”Physics of Semiconducting Nanostructure”, Narosa Publication, 1997, 25.
    (17) N. D. Kumar;M. P. Joshi;C. S. Friend. Appl. Phys. Lett. 1997,
    10, 71, 1388.
    (18) W. Z. Tang;C. P. Huang. Chemosphere. 1995, 30, 7, 1385.
    (19) A. Kampmann;D. Lincot;Electroanal.Chem. 1996, 418, 73.
    (20) P. Daocheng;W.Qiang;P. Jiebin;J. Shichun;Ji. Xiangling
    An. Lijia. Chem. Mater. 2006, 18, 4253.
    (21) Li. Ouyang;K. N. Maher;Y. C. Liang;J. McCarty;H. K.
    Park. J. Am. Chem. Soc. 2007, 129, 133.
    (22) J. P. Lowe;K. A. Peterson. “Quantum Chemistry” Third Edition,
    2006.
    (23) L. Brus. J. Phys. Chem.1986, 90, 2555.
    (24) a. A. P. Alivisatos. Science. 1996, 271, 933.
    b. Y. Wang;N. Herron. J. Phys. Chem. 1991, 95, 525.
    (25) Y. H. Yeh;M. S. Yeh;Y. P. Lee;C. S. Yeh. Chem. Lett. 1998,
    1183.
    (26) Y. S. Yang;H. F. Lee;Y. H. Yeh;M. S. Yeh;Y. P. Lee;
    C. S. Yeh. J. Phys. Chem. B. 1999,103,6851.
    (27) Y. Wang;N. Herron. J. Phys. Chem. 1991, 95, 525.
    (28) W. Chen,;Z. G. Wang,;Z. J. Lin,;J. J. Qian,;L. Y. Lin,
    Solid. State.Commun. 1996, 100, 101.
    (29) M. Lahav;E. A. Weiss;Q. B. Xu;G. M .Whitesides.
    Nano. Letters. 2006., 6, No. 9, 2166.
    (30) A. Eychmuller ; L. Katsikas ; H. Weller, Langmuir. 1990, 6,
    1605.
    (31) A. Henglein. Chem. Rev. 1989. 89. 1861.
    (32) A. V. Dijken;A. H. Janssen;M. H. P. Smitsmans;A. Meijerink
    ;D.Vanmaekelbergh. Chem. Mater. 1998, 10, 3513.
    (33) J. Nanda;B. A. kuruvilla;K. V. P. Shafi;D. D. Sarma.
    Phy. Rev. B. 1999, 59, 7473.
    (34) A. D. Yoffe. Adv. Phys. 1993, 42, 173.
    (35) M. E. Wozniak;A. Sen. Chem.Mater. 1992, 4, 753.
    (36) Y. Wang;N. Herron. J. Phys. Chem. 1987, 91, 257.
    (37) A. L. Rogach;A. Kornowski;A. Eychmuller;H.Weller;
    M. Gao;S. Kirstein. J. Phys.Chem .B. 1999, 103, 3065.
    (38) 周靜怡,“II-VI族半導體奈米晶體(量子點)之合成與光學性質分析”.國立交通大學,2002.
    (39) 王慧中,“有機電光材料修飾之硒化鎘奈米粒子的合成及性質研究”.國立中央大學,1994.
    (40) C. B. Murray;D. J. Norris;M. G. Bawendi. J. Am. Chem. Soc.
    1993, 115, 8706.
    (41) Z. A. Peng;X. Peng. J. Am. Chem. Soc. 2001, 123, 183.
    (42) W. W. Yu;X. G. Peng. Angew. Chem. Int. Ed. 2002, 41, 13.
    (43) L. Spanhel;M. Haase;H. Weller;A. Henglein. J. Am.
    Chem. Soc. 1987, 109, 5649.
    (44) M. Moffitt;A. Eisenberg . Chem. Mater. 1995, 7, 1178.
    (45) S. S. Narayanan;S. K. Pal. J. Phys. Chem. B. 2006, 110, 24403.
    (46) T. Torimoto;H. Kontani;Y. Shibutani;S. Kuwabata;T. Sakata;H. Mori;H. Yoneyama. J. Phys. Chem. B. 2001.105,6838.
    (47) H. Matsumoto;T. Sakata;H. Mori;H. Yoneyama. J. Phys. Chem.
    1996, 100, 13781.
    (48) A. Henglein. Ber.Bunsen-Ges. Phys. Chem. 1982, 86,301.
    (49) G. Nelson;J. Chandrashekar;M. A. Hoon;L. Feng;G. Zhao
    ;N. J. P. Ryba;C. S. Zuker. Nature. 2002, 416, 199.
    (50) 張瑋玲碩士論文“用電化學脈衝還原製作奈米金屬顆粒”長庚大學
    (51) P. J .F. Harris. “Philosophial Magacine”. 2004, 84, 29, 3159.
    (52) D. Q. Yang;E. Sacher. Chem.Mater. 2006, 18, 1811.
    (53) Y . Masumoto,;K. Kawabata,;T. Kawazone, Phys. Rev. B.
    1995, 52, 7834.
    (54) B. O. Dabbousi;M. G. Bawendi;O. Onitsuka;M. F. Rubner.
    Appl. Phys. Lett. 1995, 66, 1316.
    (55) H. Noglik;W. J. Pietro. Chem .Mater.1995, 7, 1333.
    (56) L. Spanhel;M. A. Anderson;J. Am. Chem. Soc. 1991, 113,
    2826.
    (57) Y. Zhang;N. Raman;J. K. Bailey;C. J. Brinkr;J. Phys. Chem.
    1992, 92, 9098.
    (58) Y. Golan;E. T. Ovanesyan;Y. Manassen;L. Margulis:G.
    Hodes;I. Rubinstein;E. G. Bithell;J. L. Hutchison. Surf. Sci. 1996, 350, 277.
    (59) Y. Golan;L. Margulis;G. Hodes;I. Rubinstein;J. L.Hutchinson.
    Surf. Sci. 1994, 311, L633.
    (60) G. S. Hsiao;M. G. Anderson;S. Gorer;D. Harris;R. M. Penner.

    (61) M. A. Anderson;S. Gorer;R. M. Penner. J. Phys. Chem. B.
    1997, 101, 5895.
    (62) S. Gorer;R. M. Penner. J. Phys. Chem. B. 1999, 103, 5750.
    (63) R. M. Penner. Acc. Chem. Res. 2000, 33, 78.
    (64) S. Gorer;J. A. Ganske;J. C. Hemminger;R. M. Penner. J. Am.
    Chem. Soc. 1998, 120, 9584.
    (65) Q. Li;J. T. Newberg;E. C. Walter;J. C. Hemminger; R. M.
    Penner. Nano Letters. 2004, Vol.4, No.2. 277
    (66) Q. Li;E. C. Walter;W. E. van der Veer;B. J. Murray;J. T.
    Newberg; E. W. Bohannan;J. A. Switzer;J. C. Hemminger;
    R. M. Penner. J. Phys. Chem. B. 2005, 109, 3169.
    (67) Q. G. Li;R. M. Penner. Nano Letters. 2005, Vol.5, No.9
    1720.
    (68) B. J. Murray;Q. Li;J. T. Newberg;E. J. Menke;J. C.Hemminger
    R. M. Penner. Nano.Letrters. 2005, Vol. 5, No.11, 2319.
    (69) M. Campagna;R. Rosei. “Photoemission and Adsorption Spectroscopy of Solid and Interfaces with Synchrotron Radiation”,North-Holland.1990.

    無法下載圖示 本全文未授權公開
    QR CODE