研究生: |
黃俊凱 Huang, Chun-Kai |
---|---|
論文名稱: |
人造石墨之電化學/機械剪切複合剝離石墨烯與性能評估 Preparation and quality evaluation of few-layer graphene using electrochemical/mechanical hybrid exfoliation method |
指導教授: |
楊啟榮
Yang, Chii-Rong 張癸森 Chsng, Kuei-Sen |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 人造石墨 、石墨烯 、電化學剝離 、剪切剝離 、超級電容器 |
英文關鍵詞: | Artificial graphite, Graphene, Electrochemistry exfoliation, Shear exfoliation, Supercapacitor |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DME.006.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:148 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合液相剝離法中的電化學剝離法與剪切剝離法(Shear exfoliation),嘗試由人造石墨粉末剝離出石墨烯,企圖增加製造人造石墨之原料,如重油(Heavy oil)或瀝青焦(Asphalt coke)的經濟價值。傳統電化學剝離法多是以塊狀、棒狀、箔片狀石墨作為研究材料,一旦電解剝離完後,其剩下非石墨烯之產物(細小石墨微粒)無法再反覆剝離成為石墨烯,只能丟棄造成浪費或另尋其他用途。本研究利用電化學剝離法與機械剪切剝離法進行石墨烯剝離實驗,透過此兩種方法的相輔相成,以粉末狀人造石墨材料作為原料,可進行連續性生產,並且非石墨烯之產物也能夠重複剝離,不會造成材料的浪費。本研究亦使用由人造石墨剝離之石墨烯樣品,與由天然石墨剝離之石墨烯樣品相互比較,透過拉曼光譜分析儀(Raman spectroscope)確認石墨烯樣品之缺陷程度(ID/IG),另以掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及原子力顯微鏡(AFM)等儀器設備,評估石墨烯片的大小、表面形貌及厚度均勻性。最後,本研究以超級電容器之比電容值表現,作為人造石墨剝離為石墨烯後,性能有無提升之評斷依據。本研究透過電化學插層法配合剪切剝離法,已成功將人造石墨粉末剝離為平均厚度約2.62 nm、平均片徑約2.86 μm之石墨烯薄片,其缺陷程度ID/IG為0.16,並具有122.74 S/cm之導電度表現,皆優於以相同手法由天然石墨材料剝離之石墨烯。本研究亦將成功製備之石墨烯薄片應用於超級電容器,透過石墨烯的添加,使得超級電容之比電容值,較只有使用人造石墨粉末材料者提升超過一倍,代表將人造石墨剝離為石墨烯有助於超級電容性能之提升。
This study demonstrated an effective liquid phase electrochemical/mechanical hybrid method to exfoliate artificial graphite into few-layer graphene flakes, and so as to enhance the economic value of useless by-products obtained from oil refining process such as heavy oil and asphalt coke. General electrochemical exfoliation using the massive, clavate and schistose graphite for research material. However, non-graphene of product has become refuse after exfoliation process. This study combined liquid phase electrochemical method and liquid phase mechanical method, realizing a continuous and low-cost process to exfoliate graphene using artificial graphite. The differences between graphene exfoliated from natural graphite and graphene exfoliated from artificial graphite were also be investigated. The crystallinity, defect degree, O/C ratio, surface morphology, size and thickness of the graphene sheet were measured by X-ray powder diffraction (XRD), raman spectroscope, electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and other equipment. Quality of produced graphene was also been evaluated through the application of supercapacitor. The experimental results showed that SEM images clearly show effective exfoliation. The produced graphene are ∼2.62 nm thick and ∼2.86 nm length in average. The conductivity is ~122.74 S/cm and defects degree (ID/IG) is 0.16. The graphene-employed supercapacitor shows a specific capacitance of 41.8 F/g, which is 2.6 times larger than that of the artificial graphite powder (16.1 F/g).
1. E. G. Acheson. US Patent No. 568323, 1896.
2. 刘洪波,“天然石墨与人造石墨刍议”,高科技与产业化月刊213期,44-49頁,2014年2月。
3. Antonio H. Castro Neto, “The carbon new age”, Materials Today, Vol. 13, No. 3, pp. 12-17, 2010.
4. R. R. Nair, et al., “Fine structure constant defines visual transparency of graphene”. Science, Vol. 320, No. 5881, pp. 1308, 2008.
5. A. A. Balandin, et al., “Superior thermal conductivity of single-layer graphene”. Nano letter, Vol. 8, No. 3, pp. 902-907, 2008.
6. K. I. Bolotin, et al., “Ultrahigh electron mobility in suspended graphene”. Solid State Commun, Vol. 146, pp. 351-355, 2008.
7. C. Lee, et al., “Measurement of the elastic properties and intrinsic strength of monolayer graphene”. Science, Vol. 321, No. 5887, pp. 385-388, 2008.
8. Toshiyuki Kobayashi, et al., “Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process”, Appl. Phys. Letter, Vol. 6, pp. 1508-1513, 2006.
9. Yuxi Xu, et al., “Functionalized graphene hydrogel-based high-performance supercapacitors”, Adv. Mater, Vol. 25, pp. 5779-5784, 2013.
10. Xin Zhao, et al., “Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications”, ACS Nano, Vol. 5, pp. 8739-8749, 2011.
11. http://www.iitbmonash.org/story-55/
12. Y. L. Zhong, Z. Tian, G. P. Simon, and D. Li, “Announcing the Elsevier green and sustainable chemistry challenge”, Materials Today, 2015.
13. University of Waikato (2012). "Surfactants Sciencelearn Hub". Abstract retrieved July 19, 2016, from http://sciencelearn.org.nz/Science-Stories/
Where-Land-Meets-Sea/Sci-Media/Images/Surfactants
14. G. G. Wallace, et al. “Nanobionics: the impact of nanotechnology on implantable medical bionic devices” Nanoscale, vol. 4, pp. 4327-4347, 2012.
15. D. H. Reneker and I. Chun "Nanometre diameter fibres of polymer, produced by electrospinning" Nanotechnology, vol. 7, pp. 216-223, 1996.
16. Q. P. Pham, et al. Mikos "Electrospinning of Polymeric nanofiber for tissue engineering applications: a review" Tissue engineering, vol. 12, pp. 1197-1211, 2006.
17. Z. Dong, et al. "Electrospinning materials for energy-related applications and devices", Power sources, vol.196, pp. 4886-4904, 2011.
18. V. Thavasi, et al. “Electrospun nanofibers in energy and environmental applications”, Energy & environmental science, vol. 1 , pp. 205-221, 2008.
19. N. Bhardwaj and S. C. Kundu “Electrospinning: A fascinating fiber fabrication technique”. Biotechnology advances, vol. 28, pp. 325-347, 2010.
20. http://www.tecategroup.com/ultracapacitors-supercapacitors/ultracapacitor-FAQ.php
21. Meihua Jin, et al., “Facile Physical Route to Highly Crystalline Graphene”, Adv. Funct. Mater., Vol. 21, pp. 3496-3501, 2011.
22. Bagri, A. et al., “Structural evolution during the reduction of chemically derived graphene oxide”, Nature Chem., Vol. 2, pp. 581–587, 2010.
23. Zhong-Shuai Wu, et al., “Synthesis of high-quality graphene with a pre-determined number of layers”, Carbon, Vol. 42, pp. 493-499, 2009.
24. K. Parvez, Z. S. Wu, R. Li, X. Liu, R. Graf, X. Feng, and K. Müllen, "Exfoliation of graphite into graphene in aqueous solutions of inorganic salts", Journal of the American Chemical Society, Vol. 136, No. 16, pp. 6083–6091, 2014.
25. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, "One-Step ionic-liquid-assisted Electrochemical synthesis of Ionic-Liquid-Functionalized Graphene sheets directly from graphite", Advanced Functional Materials, Vol. 18, No. 10, pp. 1518–1525, 2008.
26. C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, "High-quality thin Graphene films from fast Electrochemical Exfoliation", ACS Nano, Vol. 5, No. 3, pp. 2332–2339, 2011.
27. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. G. Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, " High-yield production of graphene by liquid-phase exfoliation of graphite", Nature Nanotechnology, Vol. 3, pp. 563–568, 2008.
28. J.M. Munuera, et al., “A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil”, Carbon, Vol. 115, pp. 625-628, 2017.
29. Chuen-Ming Gee, et al., “Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces”, Displays, Vol. 34, pp. 315-319, 2013.
30. C. T. J. Low, F. C. Walsh, M. H. Chakrabarti, M. A. Hashim, and M. A. Hussain, "Electrochemical approaches to the production of graphene flakes and their potential applications", Carbon, Vol. 54, pp. 1–21, 2013.
31. K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O’Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, and T. J. Pennycook, "Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids", Nature Materials, Vol. 13, No. 6, pp. 624–630, 2014.
32. L. Liu, Z. Shen, M. Yi, X. Zhang, and S. Ma, "A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces", RSC Advances, Vol. 4, No. 69, pp. 36464, 2014.
33. M.Yi and Z. Shen, "Kitchen blender for producing high-quality few-layer graphene", Carbon, Vol. 78, pp. 622–626, 2014.
34. Josphat Phiri, et al., “High-concentration shear-exfoliated colloidal dispersion of surfactant–polymer-stabilized few-layer graphene sheets”, J Mater Sci, Vol. 52, pp. 8321-8337, 2017.
35. E. Varrla, K. R. Paton, C. Backes, A. Harvey, R. J. Smith, J. McCauley, and J. N. Coleman, "Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender", Nanoscale, Vol. 6, No. 20, pp. 11810–11819, 2014..
36. 陳姿穎,”界面活性劑對電化學/機械複合剝離製程之石墨烯產率與品質影響”,國立臺灣師範大學,碩士,105。
37. F. Shi, L. Li, et al., "Metal oxide/hydroxide-based materials for supercapacitors" The royal society of chemistry, vol. 4, pp. 41910-41921, 2014.
38. J. P. Zheng, et al. “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors” Journal of the electrochemical society, vol. 142, pp. 2699-2703, 1995.
39. Yuxi Xu et al., “Functionalized graphene hydrogel-based high-performance supercapacitors”, Advanced Materials, Vol. 25, pp. 5779-5784, 2013.
40. E. Mitchell et al., “High performance supercapacitor based on multilayer of polyaniline and graphene oxide”, Synthetic Metals, Vol. 199, pp. 214-218, 2015.
41. Buddha Deka Boruah, Abha Misra, “Polyethylenimine mediated reduced graphene oxide based flexible paper for supercapacitor”, Energy Storage Materials, Vol. 5, pp. 103-110, 2016.
42. 程科翔,” RuO2/Graphene/Polyaniline 複合材料之超級電容開發” ,國立臺灣師範大學,碩士,105。
43. X. Chen, J. F. Dobson, and C. L. Raston, "Vortex fluidic exfoliation of graphite and boron nitride", Communication, Vol. 48, pp. 3703–3705, 2012.