簡易檢索 / 詳目顯示

研究生: 林建宏
Chien-Hung Lin
論文名稱: 極小NXN多模干涉光分歧器之研究與應用
Study of Ultra-small NxN Photonic Multimode Interference Splitter and Applications
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 108
中文關鍵詞: 多模干涉光分歧器絕緣層上矽晶奈米線
英文關鍵詞: Multimode Interference, Optical splitter, Silicon-on-insulator, Nano-wire
論文種類: 學術論文
相關次數: 點閱:153下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文設計最理想的奈米接取波導對於NxN型多模干涉光分歧器,並且成功在SOI晶片上模擬極小的2x2, 4x4, 8x8, 16x16 和 32x32多模干涉光分歧器。藉由SOI奈米波導技術,有效地縮減多模干涉光分歧器的元件尺寸,有助於積體光學元件之發展。接著,我們提出一個新穎的極小型1.3/1.55微米波長解多工器,是建構在多模干涉元件並內含光子晶體。最後,我們架構一個模擬的40Gb/s光傳輸系統,得到我們設計的NxN光分歧器可運用在40Gb/s光傳輸系統並有良好的傳輸品質。

    In this thesis, we design optimal nano-wire access waveguide of NxN photonic multimode interference (MMI) splitters and successfully achieve simulations of 2x2, 4x4, 8x8, 16x16 and 32x32 ultra-small photonic MMI splitters based on silicon-on-insulator (SOI). We utilize nano-wire access waveguide effectively reduce the size of photonic MMI splitters and it is contributive to the development of photonic integrated circuits. Then we propose a novel and ultra-small 1.3/1.55μm wavelength demultiplexer based on photonic MMI device with photonic crystals inside. Finally, we set up a simulate model of 40Gb/s optical transmission system and our designed NxN MMI photonic splitters can be applied well in the 40Gb/s optical transmission system.

    Chapter 1 Introduction ....................................1 Chapter 2 Design and Analysis of NxN MMI Photonic Splitters Access Nano-wire Waveguide Based on SOI....................8 2-1 Introduction of the Technique of Nano-wire Waveguide Based on SOI ..............................................9 2-1-1 Mathematic Formulation of Beam Propagation Method...10 2-1-2 Single mode Nano-wire Waveguide based on SOI........14 2-1-3 Directional Coupler between two Nano-wire Waveguide.15 2-2 Introduction of the Operation of Multimode Interference Splitter..................................................16 2-2-1 Overview the development of Multimode Interference Devices...................................................17 2-2-1-1 Introduction of Multimode Interference Splitter Devices as Passive Components.............................17 2-1-1-2 Introduction of Multimode Interference Splitter Devices as Active Components..............................18 2-2-2 Theory of Multimode Interference....................19 2-2-3 Introduction of NxN MMI Photonic Splitter...........22 2-3 Simulation Results of NxN MMI Photonic Splitters access Nano-wire Waveguide Based on SOI..........................24 2-3-1 2x2 MMI Photonic Splitter Based on SOI..............24 2-3-2 4x4 MMI Photonic Splitter Based on SOI..............26 2-3-3 8x8 MMI Photonic Splitter Based on SOI..............27 2-3-4 16x16 MMI Photonic Splitter Based on SOI............29 2-3-5 32x32 MMI Photonic Splitter Based on SOI............31 2-4 Summary...............................................33 Chapter 3 Design and Analysis of a Novel Wavelength Demultiplexer Based on MMI with Photonic Crystals inside..58 3-1 Introduction of Integrated Photonic Devices and Optical Telecommunication.........................................59 3-1-1 Introduction of Photonic Crystals...................59 3-1-2 Introduction of Plan Wave Expansion Method..........62 3-2 Design a Novel wavelength Demultiplexer Based on MMI with Photonic Crystals inside.............................64 3-2-1 Cubic Lattice Photonic Crystals in MMI Region including Three Pattern...................................65 3-2-2 Hexagon Lattice Photonic Crystals in MMI Region including Three Pattern...................................66 3-3 Simulation results of a Novel Wavelength Demultiplexer Based on MMI with Photonic Crystals inside................67 3-3-1 Simulation results of lattice=300nm and width=100nm, 125nm, 150nm, 175nm and 200nm.............................68 3-3-2 Simulation results of lattice=400nm and width=100nm, 125nm, 150nm, 175nm and 200nm.............................69 3-3-3 Simulation results of lattice=500nm and width=100nm, 125nm, 150nm, 175nm and 200nm.............................70 3-3-4 Simulation results of lattice=600nm and width=100nm, 125nm, 150nm, 175nm and 200nm.............................71 3-4 Discussion and Summary................................71 Chapter 4 Analysis of NxN MMI Photonic Splitters Applied in 40Gb/s Transmission System................................87 4-1 Introduction of Dispersion of MMI Splitter............88 4-2 Analysis of NxN MMI Photonic Splitters Applied in 40Gb/s Transmission System................................90 4-2-1 Simulation Result of 2x2 MMI Photonic Splitters in Optical 40Gb/s Transmission System .......................91 4-2-2 Simulation Result of 4x4 MMI Photonic Splitters in Optical 40Gb/s Transmission System........................92 4-2-3 Simulation Result of 8x8 MMI Photonic Splitters in Optical 40Gb/s Transmission System........................93 4-2-4 Simulation Result of 16x16 MMI Photonic Splitters in Optical 40Gb/s Transmission System........................94 4-2-5 Simulation Result of 32x32 MMI Photonic Splitters in Optical 40Gb/s Transmission System........................95 4-3 Summary...............................................95 Chapter 5 Conclusions....................................106

    [1] Tai Tsuchizawa, Koji Yamada, Hiroshi Fukuda, Toshifumi Watanabe, Jun-ichi Takahashi, Mitsutoshi Takahashi, Tetsufumi Shoji, Emi Tamechika, Sei-ichi Itabashi, and Hirofumi Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 1, pp. 232-240, 2005.
    [2] Hirohito Yamada, Tao Chu, Satomi Ishida, and Yasuhiko Arakawa, “Si photonic wire waveguide devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1371-1379, 2006.
    [3] Dumon, P., Roelkens, G., Bogaerts, W., Van Thourhout, D., Wouters, J., Beckx, S., Jaenen, P., Baets, R., “Basic photonic wire components in silicon-on-insulator,”2005.2nd IEEE International Conference on Group IV Photonics, pp. 181–183, 2005.
    [4] Sailing He, Zhanghua Han, Liu Liu, and Daoxin Dai, “Highly integrated planar lightwave circuits based on plasmonic and Si nano-waveguides,” Proceedings of SPIE, vol. 6351, 635121, 2006.
    [5] K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” Photonics Technology Letters, vol. 18, pp. 1046-1048, 2006.
    [6] A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultra-high- optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys., vol. 40, pp.383-385, 2001.
    [7] Yurii A. Vlasov and Sharee J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Optics Express, vol. 12, pp. 1622-1631, 2004.
    [8] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonic Technology Letter, vol. 16, no. 5, pp. 1328-1330, May 2004.
    [9] C. Manolatou, S. G. Johnson, S. Fan, R. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” Journal of Lightwave Technology, vol. 17, no. 9, pp. 1682–1692, Sep. 1999.
    [10] C. Angulo Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices,” Journal of Lightwave Technology, vol. 12, no. 10, pp. 2332-2339,2003.
    [11] Dimitropoulos, D., Fathpour, S., Jalali, B., Raghunathan, V., Shori, R.,Stafsudd, O., “Prospects for Silicon Mid-IR Raman Lasers,” EEE Journal of Selected Topics in Quantum Electronics, vol. 12, issue 6, pp. 1618-1627, 2006.
    [12] L. Caruso and I. Montrosset, “Analysis of a racetrack microring resonator with MMI coupler,” Journal of Lightwave Technology, vol. 21, no. 1, pp. 206-210, 2003.
    [13] H. Wei, J. Yu, X. Zhang, and Z. Liu, “Compact 3-dB tapered multimode interference coupler in silicon-on-insulator,” Optics Letters, vol. 26, no. 12, pp. 378-380, 2001.
    [14] Atma Ram Gupta, “Optimization of access waveguide width of multimode interference (MMI) couplers,” Optics Communications, vol. 221, pp. 99-103, 2003.
    [15] N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. W¨orhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” Journal of Lightwave Technology, vol. 17, no. 12, pp. 2542-2550, 1999.
    [16] S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode Interference Photonic Switches (MIPS),” Journal of Lightwave Technology, vol. 20, no. 4, pp. 675-681, 2002.
    [17] K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 μm wavelength division multiplexer based on multimode interference,” Electronics Letters, vol. 32, pp. 1259-1261, 1996.
    [18] M.P. Earnshaw, J.B.D. Soole, M. Cappuzzo, L. Gomez; E., Laskowski, A. Paunescu, “8/spl times/8 optical switch matrix using generalized Mach-Zehnder interferometers,” Photonics Technology Letters, vol. 15, pp. 810-812, 2003.
    [19] Torsten Augustsson, “Bragg grating-assisted MMI-coupler for add–drop multiplexing,” Journal of Lightwave Technology, vol. 16, pp. 1517-1522, 1998.
    [20] Lierstuen, L.O., Sudbo, A., “8-channel wavelength division multiplexer based on multimode interference couplers,” Photonics Technology Letters, vol. 7, 1034-1036, 1995.
    [21] Mohammad R. Paiam and Robert I. MacDonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Applied Optics, vol. 36, no. 21, pp. 5097-5108, 1997.
    [22] Paiam, M.R., MacDonald, R.I., “A 12-channel phased-array wavelength multiplexer with multimode interference couplers,” Photonics Technology Letters, vol. 10, pp. 241-243, 1998.
    [23] N. Goto and G. L.Yip, “Y -branch wavelength multi-demultiplexer for λ= 1.30μm and 1.55μm,” Electron. Letters, vol. 26, pp. 102-103, 1990.
    [24] F. Xiang and G. L. Yip, “An Al2O3 strip loaded Y -branch wavelengthmulti/demultiplexer for λ= 1.30 and 1.55μm by K+ Na+ ionexchangein glass,” in IPR Tech. Dig., vol. 3, pp. 130-132, 1994.
    [25] F. Xiang and G. L. Yip, “A TM Y -branch wavelength multi/demultiplexer by K+ and Ag+ ion-exchange for λ= 1.31 and 1.55μm,” Journal of Lightwave Technology, vol. 14, pp. 1690–1694, 1996.
    [26] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronic,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
    [27] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, pp. 2486-2489, 1987.
    [28] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature, vol. 386, pp. 143-149, 1997.
    [29] A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B, vol. 64, no. 3, pp. 033308, 2001.
    [30] M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express, vol. 12, no. 8, pp. 1551-1561, 2004.
    [31] R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band materials: Low-loss bends and high Q cavities,” J. Appl. Phys., vol. 75, no. 9, pp. 4753-4755, 1994.
    [32] K. H. Liu, Brian J. Wilson, and John Y.Wei, “MMI-coupled ring resonators in GaInAsP–InP,” Photonics Technology Letters, vol. 13, no. 8, pp. 812-814, 2001.
    [33] Siegfried Janz, Member, IEEE, Pavel Cheben, Dan Dalacu, Andr´e Delˆage, Adam Densmore, Boris Lamontagne, Marie-Josee Picard, E. Post, J. H. Schmid, P. Waldron, Dan-Xia Xu, K. P. Yap, and Winnie N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1402-1415, 2006.
    [34] Atma Ram Gupta, “Optimization of access waveguide width of multimode interference (MMI) couplers,” Optics Communications, 221, pp. 99-103, 2003.
    [35] Oleg V. Mishechkin and Mahmoud Fallahi, “Sol-gel-derived 4×4 multimode interference coupler: optimization and fabrication,” Opt. Eng., 43, pp. 662-666, 2004.
    [36] John M. Heaton, and R. Michael Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” Photonics Technology Letters, vol. 11, no. 2, pp. 212-214, 1999.
    [37] Youngchul Chung and Nadir Dagli, “Modeing of guided-wave optical components with efficient finite-difference beam propagation methods,” IEEE Antennas and Propagation Society International Symposium, 1992. AP-S. 1992 Digest. Held in Conjuction with: URSI Radio Science Meeting and Nuclear EMD Meeting, 18-25, July, vol. 1, pp. 248–251, 1992.
    [38] Baets, R., Bogaerts, W., Dumon, P., Roelkens, G., Christiaens, I., De Mesel, K., Taillaert, D., Luyssaert, B., Van Campenhout, J., Bienstman, P., Van Thourhout, D., Wiaux, V.; Wouters, J., Beckx, S., “Integration of photonic functions in and with silicon,” Solid-State Device Research conference, 2004. ESSDERC 2004. Proceeding of the 34th European, pp. 57-62, 2004.
    [39] Baets, R., Bienstman, P., Bogaerts, W., Taillaert, D., Luyssaert, B., “Coupling issues in strongly confined nanophotonic waveguides,” Transparent Optical Networks, 2003. Proceedings of 2003 5th International Conference on, vol. 1, pp. 191-192, 2003.
    [40] L. Vincetti, A. Cucinotta, S. Selleri and M. Zoboli, “Three-dimensional finite-element beam propagation method: assessments and developments,” J. Opt. Soc. Am. A, vol. 17, no. 6, pp. 1124-1131, 2000.
    [41] M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt., vol. 17, no. 24, pp. 3990-3998, 1978.
    [42] P. Danielsen, “Two-dimensional propagating beam analysis of an electrooptic waveguide modulator,” J. Quantum Electron., vol. 20, no. 9, pp. 1093-1097, 1984.
    [43] Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” J. Quantum Electron., vol. 26, no. 8, pp. 1335-1339, 1990.
    [44] P. Yeh, Optical waves in layered media, chapter 1, Canada, John Wiley & Sons, 1988.
    [45] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Selected Topics in Quantum Electron., vol. 6, no. 1, pp. 150-162, 2000.
    [46] G. R. Hadley, “Transparent boundary condition for the beam propagation method,” Opt. Lett., vol. 16, pp. 624-626, 1991.
    [47] W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” J. Quantum Electron., vol. 29, pp. 2639, 1993.
    [48] McNab, Sharee J.; Moll, Nikolaj; Vlasov, Yurii A., “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Optics Express, vol. 11, issue 22, p.2927, 2003.
    [49] K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett., vol. 28, pp. 1663-1664, 2003.
    [50] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett., vol. 27, no. 6, pp. 337-339, 1975.
    [51] 0. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Amer., vol. 63, no. 4, pp. 41-19, 1973.
    [52] R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Optics Commun., vol. 13, no. 3, pp. 259-264, 1975.
    [53] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
    [54] E. A. Patent, J. J. G. M. van der Tol, F. Karouta, J. J. M. Binsma, and M. K. Smit, “Effect of the first-order mode in access waveguides on the performance of unbalanced MMI couplers,” Photonics Technology Letters, vol. 16, no. 8, pp. 1882-1884, 2004.
    [55] Besse, P.A., Gini, E., Bachmann, M., Melchior, H., “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol., vol. 14, no. 10, pp. 2286-2293, 1996.
    [56] Leuthold, J.; Joyner, C.W., “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol., vol. 19, pp. 700-707, 2001.
    [57] Xiaoqing Jiang, Xia Li, Haifeng Zhou, Jianyi Yang, Minghua Wang, Yuying Wu and Shigeta Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” I Photonics Technology Letters, vol. 17, no. 11, pp. 2361-2363, 2005.
    [58] Xiang Wu, Liying Liu, Yanwu Zhang, Dongxiao Li, Wencheng Wang, Lei Xu, “Low electric power drived thermo-optic multimode interference switches with tapered heating electrodes,” Optics Commun., 258, pp. 135-143, 2006.
    [59] M. P. Earnshaw, and D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightwave Technol., vol. 20, no. 4, pp. 643-650, 2002.
    [60] L. Caruso and I. Montrosset, “Analysis of a racetrack microring resonator with MMI coupler,” J. Lightwave Technol., vol. 21, no. 1, pp. 206-210, 2003.
    [61] T. M. Benson, P. Sewell, A. Vukovic, and D. Z. Djurdjevic, “Advances in the finite difference beam propagation method,” Opt. Networks, pp. 36-41, 2001.
    [62] M. T. Hill, X. J. M. Leijtens, G. D. Khoe, and M. K. Smit, Optimizing imbalance and loss in 2 /spl times/ 2 3-dB multimode interference couplers via access waveguide width,” J. Lightwave Technol., vol. 21, no. 10, pp. 2305-1313, 2003.
    [63] Zhe Jin , Gang-Ding Peng, “Optimal design of NxN silica multimode interference couplers – an improved approach,” Optics Commun., 241, pp. 299-308, 2004.
    [64] S. J. McNab, N. Moll and Yu. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express, vol. 11, pp. 2927-2939, 2003.
    [65] V.Almeida, R. Panepucci, and M.Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. Vol.28, pp. 1302-1304, 2002.
    [66] Pieter Dumon, Wim Bogaerts, Joris Van Campenhout, Vincent Wiaux, Johan M. Wouters, Stephan Beckx, and Roel G. Baets, “Low-loss photonic wires and compact ring resonators in silicon-on-insulator,” Proc. SPIE, vol. 5450, pp. 360-368, 2004.
    [67] K. H. Liu, Brian J. Wilson, and John Y.Wei, “Fabrication and evaluation of submicron-square Si wire waveguides with spot size converters,” Lasers and Electro-Optics Society, 2002. LEOS 2002. The 15th Annual Meeting of the IEEE, vol. 1, pp. 287-288, 2002.
    [68] Bogaerts, W., Baets, R., Dumon, P., Wiaux, V., Beckx, S., Taillaert, D., Luyssaert, B., Van Campenhout, J., Bienstman, P., Van Thourhout, D., “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol., vol. 23, pp. 401-412, 2005.
    [69] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
    [70] Sakoda, K., “Enhanced light amplification due to groupvelocity anomaly peculiar to two- and three-dimensional photonic crystals,” Optics Express, vol. 4, no. 5, pp. 167-176, 1999.
    [71] S. Y. Lin, E.Chow, V. Hietala, P.R. Villeneuve, J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal”, Science, vol. 282, pp. 274-278, 1998.
    [72] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4186, 2000.
    [73] Michael Scalora, Jonathan P. Dowling, Charles M. Bowden, and Mark J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys., vol. 76, pp. 2023-2026, 1994.
    [74] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett., vol. 65, pp. 3152-3155, 1990.
    [75] Tiwari, V.N., Tiwari, T., Jha, R.K., “Comparative studies of near field distributions of solid and hollow dielectric diagonal horn antennas,” Electromagnetic Interference and Compatibility '97. Proceedings of the International Conference on, pp. 241–244, 1997.
    [76] Shangping Guo and Sacharia Albin, “Simple plane wave implementation for photonic crystal calculations,” Optics express, vol. 11, no. 2, pp. 167-175, 2003.
    [77] Baojun Li, Guozheng Li, Enke Liu, Zuimin Jiang, Jie Qin, and Xun Wang, “Low-loss 1x2 multimode interference wavelength demultiplexer in silicon–germanium alloy,” Photonics Technology Letters, vol. 11, no. 5, pp. 575-577, 1999.
    [78] L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C.M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightw. Technol., vol. 10, no. 12, pp. 1843-1850, 1992.
    [79] G. W. Euliss, “Temporal characteristic and scaling conditions of multimode interference couplers,” J. Lightw. Technol., vol. 17, no. 7, pp. 1206-1210, 1999.
    [80] Yin-Jung Chang, Thomas K. Gaylord and Gee-Kung Chang “Pulse response of multimode interference devices,” J. Lightw. Technol., vol. 24, no. 3, pp. 1462-1469, 2006.

    QR CODE