簡易檢索 / 詳目顯示

研究生: 羅國彰
Kuo-Chang Lo
論文名稱: 全像術應用於製作光子晶體之研究
The study on fabrication of photonic crystal by using holographic lithography
指導教授: 謝美莉
Hsieh, Mei-Li
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 全像光子晶體
英文關鍵詞: Holography, Photonic crystal
論文種類: 學術論文
相關次數: 點閱:418下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討利用全像術產生二維或三維週期性的干涉圖案,經曝光和顯影後,製作成光子晶體。首先我們以電腦模擬分析多道平面波干涉的光強度分佈,探討平面波的各項參數對干涉光強度分佈的影響,如光束間的夾角、光波波長對干涉圖案週期的影響,及入射光波強度比對干涉光強度分佈之闗係等,以作為設計光子晶體結構時的重要參考依據;同時我們亦設計並架設一套全像光學干涉系統,以實驗驗證理論的模擬與分析,實際製作出二維的光子晶體結構。此外,我們提出一個簡易的光學檢測方法,可即時觀測所製作的光子晶體之結構與週期。

    In this thesis, the fabrication of photonic crystal by using holographic lithography has been studied. We propose and demonstrate a holographic system to generate periodic patterns for fabricating photonic crystals. By properly adjusting the incident angle and intensity of laser beams and other factors which can affect the optical intensity distribution, the period and structure of interference pattern can be modified. Computer simulation results have been presented and optical holographic system has been constructed. In addition, a simple optical inspection method for real-time examining the structure of photonic crystal has been developed. Optical experimental result has been demonstrated and discussed.

    目 錄 摘要 i Abstract ii 致 謝 iii 目 錄 v 圖目錄 vi 表目錄 ix 1緒論 1 2全像蝕刻技術之設計與理論分析 5 2-1 理論計算與模擬 6 2-1-2 光源波長及光束夾角與光子晶體週期之關係 18 2-1-3 入射光束強度比與干涉光強度圖形之關係 24 2-1-4 干涉光強度之三維分佈 27 2-2 全像蝕刻技術之製作流程 29 3全像光學實驗 31 3-1 全像蝕刻系統 31 3-1-1 光路架設 42 3-2 實驗結果 44 3-2-1 光阻顯影結果 45 3-2-2 蝕刻結果 51 4光學量測 55 4-1 光學量測原理與理論分析 55 4-1-1 繞射圖案與晶體結構之關係 55 4-1-2 繞射圖案與晶格週期之關係 56 4-2 光學量測結果 58 5結論與未來展望 62 參考文獻 66

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physics review letter, vol. 58, 2059 (1987).
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physics review letter, vol. 58, 2486 (1987).
    [3] S. Noda and T. Baba, “Roadmap on photonic crystals,” Kluwer Academic Publishers, pp. 13, (2002).
    [4] L.Shen and S. He, “Analysis for the convergence problem of the plane wave expantion method for photonic crystal,” Journal of the optical society of America A, vol. 19, pp. 1021-1024, 2002.
    [5] K.S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE transaction on antennas and propagation, vol. ap-14, pp. 302 -307, 1966.
    [6] E. Ozbay, I. Bulu, K. Aydin, H. Caglayan and K. Guven, “Physics and application of photonic crystal,” Photonics and nanostructures – fundamentals and application, vol. 2, pp. 87-95, 2004.
    [7] H. Masuda, H.Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura, “High ordered nano-channel array architecture in anodic alumina,” Appiled physics letters, vol. 71, pp. 2770-2772, 1997.
    [8] A. Yokoo et al., “Direct nanoprinting technology and its application to nanostructure fabrication,” IEEE LEOS 13 annual meeting, vol.2, pp. 417-418, Nov. 13-16 2000.
    [9] M. Cambell, D.N. Sharp, M.T. Harrison, R.G. Denning and A.J. Turberfield, “Fabrication of photonic crystals for visible spectrum by holographic lithography,” Nature, vol. 404, pp. 53-56, 2000.
    [10] L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Optics Letters, vol. 27, pp. 900-902, 2002.
    [11] F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, H.T. Miyazaki, “opal-like photonic crystal with diamond lattice,” Applied physics letters, vol.79, pp. 2309, 2001.
    [12] M. J. Escuti and G. P. Crawford, “Holographic photonic crystals,” Optical engineering, vol. 43, pp. 1973 – 1987, 2004.
    [13] T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference pf femtosecond pulses,” Applied physics letters, vol. 28, no. 17, pp. 2758-2760, 2003.
    [14] T.M. Yan and H.K. Liu, “Holographic creation of photonic crystals,” Applied optics, vol. 43, no. 22, pp. 4376-4384, 2004.
    [15] J.W. Goodman, Introduction to Fourier optics 2nd , McGRAW-HILL.
    [16] 陳建洋, “電子束光碟刻板技術簡介與發展現況,” 機械工業雜誌, 257 期, pp. 126-138.
    [17] J.D. Gaskill, Linear systems, Fourier transforms, and Optics, John Wiley & Sons, New York, pp. 77-95, 1978.
    [18] E. Hecht, Optics 4th , Addison Wesley, pp. 158, 2002.
    [19] S. Fan, P. R. Villeneuve and J.D. Joannopoulos, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Physical review letters, vol. 78, pp. 3294-3297, 1997.
    [20] T.N. Oder, K.H. Kim, J.Y. Lin and H.X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Applied Physics Letters, vol. 84, no. 4, pp. 466 - 468, 2004.
    [21] C. Chang, T. M. Yan and H.K. Liu, “Creation of line defects in holographic photonic crystal by double-exposure thresholding method,” Applied optics, vol. 44, no. 13, pp. 2580-2591, 2005.
    [22] C.O Cho, Y.G. Roh, Y. Park, H. Jeon, B.S. Lee, H.W. Kim and Y.H. Choe, “Photonic crystal slab waveguides fabricated by the combination of holography and photolithography,” Japanese Journal of Applied Physics, vol. 43, no. 4A, pp. 1384-1387, 2004.

    無法下載圖示 本全文未授權公開
    QR CODE