簡易檢索 / 詳目顯示

研究生: 鄭政宏
Cheng, Cheng-Hung
論文名稱: 探討臺灣成年男女性飲食型態與體圍之相關性
Explore the correlations of the dietary patterns and body circumferences for the adult males and females in Taiwan
指導教授: 盧立卿
Lyu, Li-Ching
學位類別: 碩士
Master
系所名稱: 營養科學碩士學位學程
Graduate Program of Nutrition Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 202
中文關鍵詞: 飲食型態體圍測量24小時飲食回憶法飲食頻率問卷
英文關鍵詞: dietary pattern, body circumference measurements, 24-hour dietary recall, food frequency questionnaire
DOI URL: http://doi.org/10.6345/NTNU202000991
論文種類: 學術論文
相關次數: 點閱:336下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,體圍相關研究持續被探究與討論,而本土相關文獻尚有不足之處,因此本研究發展本土成年人體圍評估方法及評估不同性別的飲食型態。飲食型態並非固定的形式,其可能伴隨食物可獲性、社經地位、喜好程度與個人習慣等因素而改變,目前本土研究所欠缺飲食型態之相關數據,包括:適當的飲食評估方式、飲食挑選原則、餐次分布性、營養密度等資料分析。綜合以上因素,本研究目的為針對本土研究尚未探討的部分,欲分析臺灣不同性別成年人體圍與飲食型態之相關性。
本研究受試者共有145名 (男性71名;女性74名),以問卷蒐集基本資料與體圍資訊,並利用24小時飲食回憶法 (24-hour dietary recall, 24HDR) 以及本研究室自行研發以食材為主飲食頻率問卷 (food and ingredients-based food frequency questionnaire, FIFFQ) 蒐集飲食資料,之後運用獨立樣本T檢定 (Independent-Sample t test) 與皮爾森積差相關分析 (Pearson Correlation) 分別進行性別間飲食差異性分析與體圍及飲食型態相關性分析。
研究結果指出FIFFQ相較於24HDR並不適合用來作為定量研究的資料蒐集工具,因此本研究皆以24HDR之結果作進一步探討。本研究發現受試者在24HDR三大營養素的百分比為碳水化合物 (男性:49.3%;女性:48.6%)、蛋白質 (男性:15.6%;女性:15.7%) 與脂質 (男性:35.1%;女性:35.7%)。而每公斤體重之受試者攝取熱量平均為32.5 kcal/kg (男性:32.2 kcal/kg;女性:32.8 kcal/kg)、碳水化合物為4.0 g/kg (男性:4.0 g/kg;女性:4.0 g/kg)、蛋白質為1.2 g/kg (男性:1.2 g/kg;女性:1.3 g/kg) 以及脂質1.3 g/kg (男性:1.3 g/kg;女性:1.3 g/kg)。除此之外,24HDR之各食物類別,男性攝取量在全榖雜糧類、豆魚蛋肉類與肉類及其製品顯著大於女性攝取量 (p < 0.05)。
綜合以上結果,推論臺灣成年男性體圍中臂圍 (r = 0.308, p = 0.009,平均為30.2 cm)、腰圍 (r = 0.260, p = 0.029, 平均為88.4 cm) 以及小腿圍 (r = 0.309, p = 0.009, 平均為37.4 cm) 可能與蛋白質每日攝取量 (平均為86.64 g/day) 呈正相關;而臺灣成年女性中臂圍平均值為27.3 cm,可能與膳食纖維 (r = -0.277, p = 0.017, 平均為14.23 g/day) 以及葉酸 (r = -0.314, p = 0.007, 平均為304.04 g/day) 每日攝取量呈負相關。除此之外,藉由飲食挑選原則之結果,得知受試者挑選原則前三名為「習慣」、「便利性」以及「營養均衡」,藉此認為不單要加強國人對於營養知識的教育,也要針對支持性環境做加強,如同前述,飲食型態可能受食物可獲性、社經地位、喜好程度與個人習慣等因素所影響。

In recent years, many studies have been examed and discussed the issues related to anthropometric measurements; however, we do not have sufficient data from local studies. This study developed the methods to collect data for the circumferences and evaluated the dietary patterns by gender. Dietary patterns are changeable and influenced by multiple factors including the food availability, socioeconomic status, personal preferences and habits. At present, the local research lacks the relevant dietary pattern information, such as the proper dietary assessment methods, food selection factors, meal distributions, and nutrient density issues. Therefore, the purpose of this study is to collect the related information and analyze the correlations between the body circumferences and the dietary patterns by different genders in Taiwan.
There were total 145 subjects in this study (71 males; 74 females). Basic information and body circumference data were collected by questionnaires and the individual dietary information was collected by the 24-hour dietary recalls and the food and ingredients-based food frequency questionnaire (FIFFQ). We used the Independent-Sample t test, and the Pearson Correlation and analyzed the correlations between body circumferences and dietary patterns in male and female participants.
The results showed the FIFFQ is not suitable as the dietary assessment method for quantitative research, and the study suggests to use 24HDR method to examine the relationships between diet and anthroprometry. The study indicates the percentages of energy from the three major nutrients were carbohydrate (male: 49.32%; female: 48.58%), protein (male: 15.59%; female: 15.75%) and fat (male: 35.09%; female: 35.67%). The average calorie intake per kilogram body weight of the subjects was 32.5 kcal/kg (male: 32.2 kcal/kg; female: 32.8 kcal/kg), and the carbohydrate was 4.0 g/kg (male: 4.0 g/kg; female: 4.0 g/kg), and the protein was 1.2 g/kg (male: 1.2 g/kg; female: 1.3 g/kg), and the fat was 1.3 g/kg (male: 1.3 g/kg; female: 1.3 g/kg). Furthermore, the results from the food categories have showed that the consumptions of the whole grains, beans, fish, eggs, meat, meat and their products in the male population were significantly higher than in the females (p < 0.05).
In addition, the male upper-mid-arm circumference (r = 0.308, p = 0.009, mean = 30.2 cm), waist circumference (r = 0.260, p = 0.029, mean = 88.4 cm), and calf circumference (r = 0.309, p = 0.009, mean = 37.4 cm) were all positively correlated with the daily protein intake (mean = 86.64 g/day). In addition, the female upper- mid-arm circumference (mean= 27.3 cm) was negatively correlated with the dietary fiber (r = -0.277, p = 0.017, mean = 14.23 g/day) and the folic acid (r = -0.314, p = 0.007, mean = 304.04 g/day). Although the daily nutrient intakes were not reach the DRIs for some micronutrients in this study population, the results of the dietary selection factors showed that the "habit", "convenience" and "balanced nutrition" were the top three selection principles. This study suggests it is not only to enhance the education of nutrition knowledge, but also to improve the supportive environment. The dietary patterns are influenced by the factors such as food availability, socioeconomic status, personal preference levels and food habits.

第一章:緒論 1 第一節. 研究動機 1 第二節. 研究目的與問題 2 第三節. 名詞解釋 3 第二章:文獻探討 5 第一節. 飲食評估方法 5 第二節. 身體質量指數與人體測量 10 第三節. 各國飲食與體圍測量的相關研究 16 第三章:研究方法 29 第一節. 研究設計與組織 29 第二節. 研究工具與資料收集 34 第三節. 資料處理與統計分析 38 第四章:研究結果 43 第一節. 基本資料 43 第二節. 體圍測量 50 第三節. 飲食資料 51 第四節. 相關性分析 77 第五章:研究討論 128 第一節. 飲食與體圍於不同性別間之分布性 128 第二節. 飲食與體圍於不同性別間之差異性 133 第三節. 飲食與體圍於不同性別間之相關性 141 第六章:研究限制與未來展望 143 第七章:研究結論 146 參考文獻 148 附 錄 157

中文來源:
Wen-harn Pan, S.-H. T. (2011). 2004-2008 Nutrition and Health Survey in Taiwan(NAHSIT). Available from Survey Research Data Archive, Academia Sinica. doi:doi:10.6141/TW-SRDA-D00090-1

判斷自己是否屬於健康體重. (2018). 衛生福利部國民健康署。取自
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=542&pid=705

國人膳食營養素參考攝取量第八版總表. (2020). 衛生福利部國民健康署。取自
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4248&pid=12285

潘文涵. (2019). 國民營養健康狀況變遷調查成果報告 2013-2016年. 行政院衛生署食品藥物管理局, 國民營養健康調查。取自
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=3999&pid=11145

潘文涵, 吳幸娟, 葉志嶸, 莊紹源, 張新儀, 葉乃華, & 謝耀德. (2009). 台灣人飲食與健康之趨勢: 1993-1996 與 2005-2008 兩次營養健康調查之比較. 行政院衛生署食品藥物管理局, 國民營養健康調查。取自
https://consumer.fda.gov.tw/uc/getfile.ashx?type=page&id=6006

陳姮霏(民93)。懷孕婦女飲食狀況對新生兒體型影響之前瞻性研究(未出版之碩士論文)。國立臺灣師範大學,台北市。

劉志怡(民107)。台灣成人食材為主飲食頻率問卷之發展研究(未出版之碩士論文)。國立臺灣師範大學,台北市。

游家佳(民108)。評估臺灣成人飲食頻率問卷之效度(未出版之碩士論文)。國立臺灣師範大學,台北市

徐桂婷(民108)。發展三項健康飲食指標評估臺灣北部地區青少年與母親飲食質量(未出版之碩士論文)。國立臺灣師範大學,台北市。

英文來源:
AMPM - Features. (2019). Retrieved from https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/ampm-features/

Andersson, I., & Rossner, S. (1996). The Gustaf Study: Repeated, Telephone-Administered 24-hour Dietary Recalls of Obese and Normal-Weight Men — Energy and Macronutrient Intake and Distribution Over the Days of The Week. Journal of the American Dietetic Association, 96(7), 686-692. doi:https://doi.org/10.1016/S0002-8223(96)00189-7

Arganini, C., Saba, A., Comitato, R., Virgili, F., & Turrini, A. (2012). Public Health–Social and Behavioral Health. InTech Open Access Publisher.

Australian Government Department of Health (2013). Nutrients. Retrieved from https://www1.health.gov.au/internet/publications/publishing.nsf/Content/canteen-mgr-tr1~nutrients

Baxter, S. D., Thompson, W. O., Davis, H. C., & Johnson, M. H. (1997). Impact of Gender, Ethnicity, Meal Component, and Time Interval Between Eating and Reporting on Accuracy of Fourth-Graders’ Self-Reports of School Lunch. Journal of the American Dietetic Association, 97(11), 1293-1298. doi:https://doi.org/10.1016/S0002-8223(97)00309-X

Biehl, A., Hovengen, R., Meyer, H. E., Hjelmesæth, J., Meisfjord, J., Grøholt, E.-K., Strand, B. H. (2013). Impact of instrument error on the estimated prevalence of overweight and obesity in population-based surveys. BMC public health, 13(1), 146.

Blanton, C. A., Moshfegh, A. J., Baer, D. J., & Kretsch, M. J. (2006). The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J Nutr, 136(10), 2594-2599. doi:10.1093/jn/136.10.2594

Block, G., Hartman, A. M., Dresser, C. M., Carroll, M. D., Gannon, J., & Gardner, L. (1986). A data-based approach to diet questionnaire design and testing. American journal of epidemiology, 124(3), 453-469.

BMI classification (2019). Retrieved from http://www.assessmentpsychology.com/icbmi.htm

Bredella, M. A. (2017). Sex Differences in Body Composition. Mauvais-Jarvis F. (eds) Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity. Advances in Experimental Medicine and Biology, vol 1043. Springer, Cham. doi:https://doi.org/10.1007/978-3-319-70178-3_2

Carter, C. M., Albar, A. S., Morris, A. M., Mulla, Z. U., Hancock, N., Evans, E. C., Cade, E. J. (2015). Development of a UK Online 24-h Dietary Assessment Tool: myfood24. Nutrients, 7(6). doi:10.3390/nu7064016

Casadei K, K. J. (2019). Anthropometric Measurement. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK537315/

Castellanos-Gutierrez, A., Sanchez-Pimienta, T. G., Carriquiry, A., da Costa, T. H. M., & Ariza, A. C. (2018). Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutrition journal, 17(1), 114. doi:10.1186/s12937-018-0422-2

Chakraborty R, B. K., Koziel S. (2011). Use of mid-upper arm circumference in determining undernutrition and illness in rural adult Oraon men of Gumla District. Jharkhand, India. Rural and remote health, 11(3), 1754.

Conway, J. M., Ingwersen, L. A., & Moshfegh, A. J. (2004). Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc, 104(4), 595-603. doi:10.1016/j.jada.2004.01.007

Conway, J. M., Ingwersen, L. A., Vinyard, B. T., & Moshfegh, A. J. (2003). Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr, 77(5), 1171-1178. doi:10.1093/ajcn/77.5.1171

Dennis, B., Ernst, N., Hjortland, M., Tillotson, J., & Grambsch, V. (1980). The NHLBI nutrition data system. J Am Diet Assoc, 77(6), 641-647.

Dietary Assessment Primer. (2019). Retrieved from https://dietassessmentprimer.cancer.gov/

Du, H., van der A Dl Fau - Boshuizen, H. C., Boshuizen Hc Fau - Forouhi, N. G., Forouhi Ng Fau - Wareham, N. J., Wareham Nj Fau - Halkjaer, J., Halkjaer J Fau - Tjønneland, A., Feskens, E. J. (2010). Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. The American journal of clinical nutrition, 91(2), 329–336(1938-3207 (Electronic)). doi:10.3945/ajcn.2009.28191

Dubois, S., & Boivin, J. F. (1990). Accuracy of telephone dietary recalls in elderly subjects. Journal of the American Dietetic Association, 90(12), 1680-1687. Retrieved from http://europepmc.org/abstract/MED/2246447

El Kinany, K., Garcia-Larsen, V., Khalis, M., Deoula, M. M. S., Benslimane, A., Ibrahim, A., El Rhazi, K. (2018). Adaptation and validation of a food frequency questionnaire (FFQ) to assess dietary intake in Moroccan adults. Nutrition journal, 17(1), 61-61. doi:10.1186/s12937-018-0368-4

Ford, E. S., Mokdad, A. H., & Giles, W. H. (2003). Trends in Waist Circumference among U.S. Adults. Obesity Research, 11(10), 1223-1231. doi:10.1038/oby.2003.168

Fox, T. A., Heimendinger, J., & Block, G. (1992). Telephone surveys as a method for obtaining dietary information: a review. Journal of the American Dietetic Association, 92(6), 729-732. Retrieved from http://europepmc.org/abstract/MED/1607571

Frid, H., Thors Adolfsson, E., Rosenblad, A., & Nydahl, M. (2013). Agreement between different methods of measuring height in elderly patients. Journal of Human Nutrition and Dietetics, 26(5), 504-511.

Geeta, A., Jamaiyah, H., Safiza, M., Khor, G., Kee, C., Ahmad, A., Faudzi, A. (2009). Reliability, technical error of measurements and validity of instruments for nutritional status assessment of adults in Malaysia. Singapore medical journal, 50(10), 1013.

Grande, F., & Vincent, A. (2020). The Importance of Food Composition Data for Estimating Micronutrient Intake: What Do We Know Now and into the Future? Nestle Nutrition Institute workshop series, 93, 39–50(1664-2155 (Electronic)). doi:10.1159/000503355

GRAY, G. E., PAGANINI-HILL, A., ROSS, R. K., & HENDERSON, B. E. (1984). Assessment of three brief methods of estimation of vitamin A and C intakes for a prospective study of cancer: comparison with dietary history. American journal of epidemiology, 119(4), 581-590.

Guigoz, Y., Lauque S Fau - Vellas, B. J., & Vellas, B. J. (2002). Identifying the elderly at risk for malnutrition. The Mini Nutritional Assessment. Clinics in geriatric medicine, 18(4), 737–757(0749-0690 (Print)). doi:10.1016/s0749-0690(02)00059-9

Guthrie, H. A. (1984). Selection and quantification of typical food portions by young adults. Journal of the American Dietetic Association, 84(12), 1440–1444.(0002-8223 (Print)).

Habicht, J. (1974). Standardization of quantitative epidemiological methods in the field. Boletin de La Oficina Sanitaria Panamericana. Pan American Sanitary Bureau, 76(5), 375.

Hankin, J. H., Nomura, A., Lee, J., Hirohata, T., & Kolonel, L. N. (1983). Reproducibility of a diet history questionnaire in a case-control study of breast cancer. The American journal of clinical nutrition, 37(6), 981-985.

Heady, J. (1961). Diets of bank clerks development of a method of classifying the diets of individuals for use in epidemiological studies. Journal of the Royal Statistical Society: Series A (General), 124(3), 336-361.

Htun, N. C., Suga, H., Imai, S., Shimizu, W., & Takimoto, H. (2017). Food intake patterns and cardiovascular risk factors in Japanese adults: analyses from the 2012 National Health and nutrition survey, Japan. Nutrition journal, 16(1), 61. doi:10.1186/s12937-017-0284-z

Ikeda, N., Takimoto, H., Imai, S., Miyachi, M., & Nishi, N. (2015). Data resource profile: the Japan National Health and nutrition survey (NHNS). International journal of epidemiology, 44(6), 1842-1849.

Jafari-Koshki, T., Mansourian, M., Hosseini, S. M., & Amini, M. (2016). Association of waist and hip circumference and waist-hip ratio with type 2 diabetes risk in first-degree relatives. Journal of diabetes and its complications, 30(6), 1050–1055(1873-460X (Electronic)).doi:10.1016/j.jdiacomp.2016.05.003

Jakobsen, M. U., Madsen, L., Skjoth, F., Berentzen, T. L., Halkjaer, J., Tjonneland, A., Overvad, K. (2017). Dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference. Am J Clin Nutr, 105(5), 1148-1157. doi:10.3945/ajcn.116.140079

James, W. P., Chunming, C., & Inoue, S. (2002). Appropriate Asian body mass indices? Obes Rev, 3(3), 139. doi:10.1046/j.1467-789x.2002.00063.x

Janssen, I., Katzmarzyk, P. T., & Ross, R. (2004). Waist circumference and not body mass index explains obesity-related health risk. The American journal of clinical nutrition, 79(3), 379-384. doi:10.1093/ajcn/79.3.379

Kennedy, E., & Luo, H. (2015). Association between rice consumption and selected indicators of dietary and nutritional status using National Health and Nutrition Examination Survey 2007-2008. Ecol Food Nutr, 54(3), 224-239. doi:10.1080/03670244.2014.972391

Kim, Y. H., & So, W. Y. (2017). Relative lower body circumferences are associated with the prevalence of metabolic syndrome and arterial stiffness. Technol Health Care, 25(2), 211-219. doi:10.3233/THC-161264

Komlos, J. (1994). On the significance of anthropometric history. Stature, living standards, and economic development, 210-220.

Krakauer, N. Y., & Krakauer, J. C. (2018). Untangling Waist Circumference and Hip Circumference from Body Mass Index with a Body Shape Index, Hip Index, and Anthropometric Risk Indicator. Metabolic syndrome and related disorders, 16(4), 160–165(1557-8518 (Electronic)). doi:10.1089 / met.2017.0166

Lahav, Y., Epstein, Y., Kedem, R., & Schermann, H. (2018). A novel body circumferences-based estimation of percentage body fat. Br J Nutr, 119(6), 720-725. doi:10.1017/S0007114518000223

Lean, M. E. J., Han, T. S., & Morrison, C. E. (1995). Waist circumference as a measure for indicating need for weight management. BMJ, 311(6998), 158. doi:10.1136/bmj.311.6998.158

Lean, M. E. J., Han, T. S., & Morrison, C. E. (1995). Waist circumference as a measure for indicating need for weight management. BMJ, 311(6998), 158-161. doi:10.1136/bmj.311.6998.158

Li, M., & Shi, Z. (2017). Dietary Pattern during 1991-2011 and Its Association with Cardio Metabolic Risks in Chinese Adults: The China Health and Nutrition Survey. Nutrients, 9(11). doi:10.3390/nu9111218

Lo, K., Wong, M., Khalechelvam, P., & Tam, W. (2016). Waist-to-height ratio, body mass index and waist circumference for screening paediatric cardio-metabolic risk factors: a meta-analysis. Obes Rev, 17(12), 1258-1275. doi:10.1111/obr.12456

Lohman, T. G., Roche, A. F., & Martorell, R. (1988). Anthropometric standardization reference manual (Vol. 177): Human kinetics books Champaign, IL.

Maddaloni, E., Cavallari, I., De Pascalis, M., Keenan, H., Park, K., Manfrini, S., Pozzilli, P. (2016). Relation of Body Circumferences to Cardiometabolic Disease in Overweight-Obese Subjects. Am J Cardiol, 118(6), 822-827. doi:10.1016/j.amjcard.2016.06.044

Madden, A. M., & Smith, S. (2016). Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet, 29(1), 7-25. doi:10.1111/jhn.12278

Marr, J. W. (1971). Individual dietary surveys: purposes and methods. In World review of nutrition and dietetics (Vol. 13, pp. 105-164): Karger Publishers.

Medical Research Council. (2019). DAPA Measurements Toolkit-Anthropometric. Retrieved from https://www.measurement-toolkit.org/anthropometry/introduction/anthropometry

Miles, S., & Scaife, V. (2003). Optimistic bias and food. Nutrition research reviews, 16(1), 3-19. doi:10.1079/NRR200249

Mohd Nawi, S. N., Khow Ks Fau - Lim, W. S., Lim Ws Fau - Yu, S. C., & Yu, S. C. (2019). Screening Tools for Sarcopenia in Community-Dwellers: A Scoping Review. Annals of the Academy of Medicine, Singapore, 48(7), 201–216(0304-4602 (Print)).

Moshfegh, A. J., Rhodes, D. G., Baer, D. J., Murayi, T., Clemens, J. C., Rumpler, W. V., . . . Cleveland, L. E. (2008). The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr, 88(2), 324-332. doi:10.1093/ajcn/88.2.324

Murakami, K., Livingstone, M. B., Okubo, H., & Sasaki, S. (2017). Energy density of the diets of Japanese adults in relation to food and nutrient intake and general and abdominal obesity: a cross-sectional analysis from the 2012 National Health and Nutrition Survey, Japan. Br J Nutr, 117(1), 161-169. doi:10.1017/s0007114516004451

Neumark-Sztainer, D., Sherwood Ne Fau - French, S. A., French Sa Fau - Jeffery, R. W., & Jeffery, R. W. (1999). Weight control behaviors among adult men and women: cause for concern? Obesity Research, 7(2), 179–188.(1071-7323 (Print)). Retrieved from https://doi.org/10.1002/j.1550-8528.1999.tb00700.x

Organization, W. H. (1998). Obesity: preventing and managing the global epidemic: report of a WHO consultation on obesity, Geneva, 3-5 June 1997. Retrieved from

Pérez Rodrigo, C., Aranceta, J., Salvador, G., & Varela-Moreiras, G. (2015). Food frequency questionnaires. Nutricion hospitalaria, 31 Suppl 3, 49–56.(1699-5198 (Electronic)). Retrieved from https://doi.org/10.3305/nh.2015.31.sup3.8751

Park, K. B., Park, H. A., Kang, J. H., Kim, K., Cho, Y. G., & Jang, J. (2018). Animal and Plant Protein Intake and Body Mass Index and Waist Circumference in a Korean Elderly Population. Nutrients, 10(5). doi:10.3390/nu10050577

Pingitore, R., Spring B Fau - Garfield, D., & Garfield, D. (1997). Gender differences in body satisfaction. 5(5), 402–409.(1071-7323 (Print)). Retrieved from https://doi.org/10.1002/j.1550-8528.1997.tb00662.x

Powell-Tuck, J., & Hennessy, E. M. (2003). A comparison of mid upper arm circumference, body mass index and weight loss as indices of undernutrition in acutely hospitalized patients. Clinical Nutrition, 22(3), 307-312. doi:https://doi.org/10.1016/S0261-5614(03)00009-8

RAO, K. V., & SINGH, D. (1970). An Evaluation of the Relationship between Nutritional Status and Anthropometric Measurements. The American journal of clinical nutrition, 23(1), 83-93. doi:10.1093/ajcn/23.1.83

Reidlinger, D., Willis, J., & Whelan, K. (2015). Resting metabolic rate and anthropometry in older people: a comparison of measured and calculated values. Journal of Human Nutrition and Dietetics, 28(1), 72-84.

Roka, R., Michimi, A., & Macy, G. (2015). Associations Between Hypertension and Body Mass Index and Waist Circumference in U.S. Adults: A Comparative Analysis by Gender. High Blood Press Cardiovasc Prev, 22(3), 265-273. doi:10.1007/s40292-015-0106-3

Salvador Castell, G., Serra-Majem, L., & Ribas-Barba, L. (2015). What and how much do we eat? 24-hour dietary recall method. Nutr Hosp, 31 Suppl 3, 46-48. doi:10.3305/nh.2015.31.sup3.8750

Savva, S. C., Lamnisos, D., & Kafatos, A. G. (2013). Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes, 6, 403-419. doi:10.2147/DMSO.S34220

Schaap, L. A., Quirke, T., Wijnhoven, H. A. H., & Visser, M. (2018). Changes in body mass index and mid-upper arm circumference in relation to all-cause mortality in older adults. Clinical Nutrition, 37(6, Part A), 2252-2259. doi:https://doi.org/10.1016/j.clnu.2017.11.004

Shim, J. S., Oh, K., & Kim, H. C. (2014). Dietary assessment methods in epidemiologic studies. Epidemiol Health, 36, e2014009. doi:10.4178/epih/e2014009

Simoes, M., Severo, M., Oliveira, A., Ferreira, I., & Lopes, C. (2016). Predictive equations for estimating regional body composition: a validation study using DXA as criterion and associations with cardiometabolic risk factors. Ann Hum Biol, 43(3), 219-228. doi:10.3109/03014460.2015.1054427

Snetselaar, L. G., Chenard, C. A., Hunsicker, L. G., & Stumbo, P. J. (1995). Protein calculation from food diaries of adult humans underestimates values determined using a biological marker. J Nutr, 125(9), 2333-2340. doi:10.1093/jn/125.9.2333

Sánchez-Villegas, A., & Martínez-Lapiscina, E. H. (2018). A Healthy Diet for Your Heart and Your Brain. In The Prevention of Cardiovascular Disease Through the Mediterranean Diet (pp. 169-197).

STEFANIK, P. A., & Trulson, M. F. (1962). Determining the frequency intakes of foods in large group studies. The American journal of clinical nutrition, 11(5), 335-343.

Subar, A. F., Thompson, F. E., Smith, A. F., Jobe, J. B., Ziegler, R. G., Potischman, N., . . . Kruse, L. (1995). Improving food frequency questionnaires: a qualitative approach using cognitive interviewing. Journal of the American Dietetic Association, 95(7), 781-788.

Tosato, M., Marzetti, E., Cesari, M., Savera, G., Miller, R. R., Bernabei, R., . . . Calvani, R. (2017). Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clinical and Experimental Research, 29(1), 19-27. doi:10.1007/s40520-016-0717-0

Ulijaszek, S. J., & Kerr, D. A. (1999). Anthropometric measurement error and the assessment of nutritional status. British Journal of Nutrition, 82(3), 165-177.

Weng, C.-H., Tien, C.-P., Li, C.-I., L’Heureux, A., Liu, C.-S., Lin, C.-H., . . . Lin, W.-Y. (2018). Mid-upper arm circumference, calf circumference and mortality in Chinese long-term care facility residents: a prospective cohort study. BMJ Open, 8(5), e020485. doi:10.1136/bmjopen-2017-020485

Westat, I. (1992). NHANES III Dietary Interviewer’s Manual.

Wiehl, D. G., & Reed, R. (1960). Development of new or improved dietary methods for epidemiological investigations. American Journal of Public Health and the Nations Health, 50(6_Pt_1), 824-828.

Willett, W. (2012). Nutritional Epidemiology.

Wise, J. (2017). Waist measurement, not BMI, is stronger predictor of death risk, study finds. BMJ, 357, j2033. doi:10.1136/bmj.j2033

Zhang, J. G., Wang, Z. H., Wang, H. J., Du, W. W., Su, C., Zhang, J., Zhang, B. (2015). Dietary patterns and their associations with general obesity and abdominal obesity among young Chinese women. Eur J Clin Nutr, 69(9), 1009-1014. doi:10.1038/ejcn.2015.8

Zhang, Q., Chen, X., Liu, Z., Varma, D. S., Wan, R., Wan, Q., & Zhao, S. (2016). Dietary Patterns in Relation to General and Central Obesity among Adults in Southwest China. Int J Environ Res Public Health, 13(11). doi:10.3390/ijerph13111080

Zhu, S., Wang, Z., Heshka, S., Heo, M., Faith, M. S., & Heymsfield, S. B. (2002). Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. The American journal of clinical nutrition, 76(4), 743-743.

無法下載圖示 電子全文延後公開
2025/08/11
QR CODE