簡易檢索 / 詳目顯示

研究生: 林洋
Lin, Yang
論文名稱: 自駕車於街道場景之即時防碰撞閃避路徑規劃與控制系統設計
Real-Time Collision-free Trajectory Planning and Control System Design for Autonomous Vehicles in Street Scenarios
指導教授: 林政宏
Lin, Cheng-Hung
蔣欣翰
Chiang, Hsin-Han
口試委員: 陳瑄易
Chen, Syuan-Yi
蔣欣翰
Chiang, Hsin-Han
林政宏
Lin, Cheng-Hung
口試日期: 2022/08/03
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 56
中文關鍵詞: 軌跡規劃閃避障礙物自動駕駛駕駛安全動態情境
英文關鍵詞: Trajectory planning, obstacle avoidance, autonomous driving, driving safety, dynamic scenarios
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201799
論文種類: 學術論文
相關次數: 點閱:234下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,自駕車的控制系統不斷改良且相關技術已愈發成熟,已有越來越多的自駕車上路測試及營運,但是國外開發的系統不一定適用於國內特有交通情境上,尤其在國內街道場景中,可經常看到路邊臨時停車以及機慢車沿路緣低速行駛的案例,因此自駕車須能進行閃避的駕駛行為避免碰撞意外發生。本論文目標為發展一套可應用於自駕車閃避障礙物控制系統,在車輛行駛過程中可評估該障礙物移動模式,判定為動態或靜態障礙物,再決定以何種軌跡規劃策略來進行閃避駕駛行為。首先利用自駕車安裝之感測器判斷前方行駛路徑上是否存在障礙物,並利用障礙物動態偵測評估該障礙物動態屬性。若須閃避的障礙物為靜態障礙物,可利用分段規劃路徑以替代重複規劃相似路徑;若為動態障礙物,則會根據感測之動態資訊即時規劃新的閃避路徑,以保證車輛閃避過程中防止碰撞發生。本論文先採用CarSim與Python進行協同模擬,驗證靜態障礙物與動態障礙物情境下的閃避控制設計。最後透過實車收集人類駕駛應對障礙物的閃避軌跡與數據,並與本論文提出之軌跡進行分析與比較。實驗結果驗證了該方法有效提高計算軌跡的效率,並且所展現之閃避策略效果與人類駕駛非常接近。

    In recent years, the self-driving control system has been continuously improved and related technologies have become more mature. more and more self-driving cars have been tested and operated on the road. However, the system developed abroad is uncertain and suitable for the unique domestic traffic situations. Especially in domestic street scenes, temporary parking on the side of the road and slow cars driving at low speed along the curbs can often be seen. Therefore, self-driving cars must be able to evasive driving behavior to avoid collision accidents. The goal of this thesis develops a control system that can be applied to self-driving cars to avoid obstacles. During the driving process of the vehicle, the movement mode of the obstacle can be evaluated and determined as a dynamic or static obstacle, and then determine to execute which trajectory planning for avoidance driving behavior. Firstly, using the sensors installed in the self-driving car to determine whether there is an obstacle ahead of the driving path, and use the dynamic detection of obstacles to evaluate the dynamic properties of the obstacles. If the obstacle must be avoided is a static obstacle, the segmented planning path can be used to replace the repeated planning of similar paths; If it is a dynamic obstacle, a new avoidance path will be planned in real-time according to the sensed dynamic information to prevent collisions during vehicle avoidance. In this paper, CarSim and Python are used for collaborative simulation to verify the avoidance control design under static and dynamic obstacles. Finally, the trajectory and data of human drivers responding to obstacles are collected through real vehicles, and the trajectories proposed in this paper are analyzed and compared. The experimental results verify that the proposed method effectively improves the efficiency of calculating trajectories, and the evasion strategy effect shown is very close to human driving.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 5 1.3 文獻回顧 5 1.4 論文架構 9 第二章 軟體與硬體架構 10 2.1 實驗平台–Luxgen S3 10 2.1.1 硬體架構 11 2.1.2 感測器系統 16 2.1.3 定位與導航 20 2.2 模擬軟體–CarSim 21 第三章 閃避策略與控制系統設計 22 3.1 系統架構 22 3.2 障礙物動態分析 23 3.3 閃避軌跡規劃 24 3.4 閃避控制策略設計 28 3.5 軌跡追蹤控制器 30 第四章 實驗驗證與結果分析 32 4.1 實驗環境建置 32 4.1.1 模擬環境 33 4.1.2 協同模擬 37 4.1.3 實車數據蒐集環境 40 4.2 結果與分析 42 4.2.1 靜態障礙物閃避測試 42 4.2.2 動態障礙物閃避測試 45 4.2.3 不同速度閃避分析 47 4.2.4 閃避策略分析 49 第五章 結論與未來展望 51 5.1 結論 51 5.2 未來展望 52 參考文獻 53 附錄–參數符號表 56

    [1] 警政統計查詢網"事故概況統計:道路交通事故-按肇事原因分",URL: https://ba.npa.gov.tw/npa/stmain.jsp?sys=100
    [2] 桃園市政府市政新聞,URL: https://www.tycg.gov.tw/ch/home.jsp?id=10412&parentpath=0&mcustomize=news_view_small.jsp&dataserno=202106020003&aplistdn=ou=news,ou=chinese,ou=ap_root,o=tycg,c=tw&toolsflag=Y
    [3] 國內首創!新竹物流啟用自駕送貨服務、範圍近2公里,解決人力吃緊,URL: https://www.bnext.com.tw/article/66190/hct--self-driving-logistics
    [4] Chart: The Self-Driving Car Companies Going The Distance | Statista, URL: https://www.statista.com/chart/17144/test-miles-and-reportable-miles-per-disengagement/
    [5] Press–Waymo, URL: https://waymo.com/press/?ncr
    [6] Cruise, URL: https://www.getcruise.com/news/
    [7] SAE Levels of Driving Automation™ Refined for Clarity and International Audience, URL: https://www.sae.org/blog/sae-j3016-update
    [8] P. Bautista-Camino, A. I. Barranco-Gutiérrez, I. Cervantes, M. Rodríguez-Licea, J. Prado-Olivarez, and F. J. Pérez-Pinal, "Local Path Planning for Autonomous Vehicles Based on the Natural Behavior of the Biological Action-Perception Motion," Energies, vol. 15, no. 5, p. 1769, 2022.
    [9] T. Shim, G. Adireddy, and H. Yuan, "Autonomous vehicle collision avoidance system using path planning and model-predictive-control-based active front steering and wheel torque control," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile engineering, vol. 226, no. 6, pp. 767-778, 2012.
    [10] D. Yang, S. Zheng, C. Wen, P. J. Jin, and B. Ran, "A dynamic lane-changing trajectory planning model for automated vehicles," Transportation Research Part C: Emerging Technologies, vol. 95, pp. 228-247, 2018.
    [11] C. You, J. Lu, D. Filev, and P. Tsiotras, "Autonomous planning and control for intelligent vehicles in traffic," IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2339-2349, 2019.
    [12] J.-w. Choi, R. E. Curry, and G. H. Elkaim, "Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles," IAENG International Journal of Applied Mathematics, vol. 40, no. 2, 2010.
    [13] J.-w. Choi, R. Curry, and G. Elkaim, "Path planning based on bézier curve for autonomous ground vehicles," in Advances in Electrical and Electronics Engineering-IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, 2008: IEEE, pp. 158-166.
    [14] A. Norouzi, R. Kazemi, and S. Azadi, "Vehicle lateral control in the presence of uncertainty for lane change maneuver using adaptive sliding mode control with fuzzy boundary layer," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 232, no. 1, pp. 12-28, 2018.
    [15] Y. Chen, C. Hu, and J. Wang, "Motion planning with velocity prediction and composite nonlinear feedback tracking control for lane-change strategy of autonomous vehicles," IEEE Transactions on Intelligent Vehicles, vol. 5, no. 1, pp. 63-74, 2019.
    [16] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, "Autonomous automobile trajectory tracking for off-road driving: Controller design, experimental validation and racing," in 2007 American control conference, 2007: IEEE, pp. 2296-2301.
    [17] 模型預測控制 - 維基百科,自由的百科全書,URL: https://zh.m.wikipedia.org/zh-tw/%E6%A8%A1%E5%9E%8B%E9%A0%90%E6%B8%AC%E6%8E%A7%E5%88%B6
    [18] L. Yang, M. Yue, and T. Ma, "Path following predictive control for autonomous vehicles subject to uncertain tire-ground adhesion and varied road curvature," International Journal of Control, Automation and Systems, vol. 17, no. 1, pp. 193-202, 2019.
    [19] S. Xu, H. Peng, and Y. Tang, "Preview path tracking control with delay compensation for autonomous vehicles," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 5, pp. 2979-2989, 2020.
    [20] LUXGEN S3車輛規格配備表,URL: https://www.luxgen-motor.com.tw/spec/S3/201808_S3%E8%A6%8F%E9%85%8D%E8%A1%A8.pdf
    [21] iBooster系統 - YouTube,URL: https://www.youtube.com/watch?v=PIhXJh1wP4I
    [22] 宸曜科技 Nuvo-8208GC,URL: https://www.neousys-tech.com/tw/product/application/edge-ai-gpu-computing/nuvo-8208gc-intel-8th-gen-dual-nvidia-rtx-2080ti-gpu-computing-platform
    [23] TMS320F28379D data sheet, URL: https://www.ti.com/product/TMS320F28379D
    [24] Alpha Prime | Velodyne Lidar, URL: https://velodynelidar.com/products/alpha-prime/
    [25] RT3000 GNSS-aided inertial navigation system, URL: https://www.oxts.com/products/rt3000-v3/
    [26] iDS UI-5250FA, URL: https://en.ids-imaging.com/store/ui-5250fa.html
    [27] P. Polack, F. Altché, B. d'Andréa-Novel, and A. de La Fortelle, "The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles?," in 2017 IEEE intelligent vehicles symposium (IV), 2017: IEEE, pp. 812-818.
    [28] G. J. Forkenbrock and D. Elsasser, "An assessment of human driver steering capability," National Highway Traffic Safety Administration DOT HS, vol. 809, p. 875, 2005.
    [29] 靜態障礙物軟式目標車4Active-en,URL: https://www.euroamerica-im.com/4active-en#fbp

    下載圖示
    QR CODE