研究生: |
朱麒宇 |
---|---|
論文名稱: |
精微電加工法開發內皮層陣列腦波探針研究 Development of a penetrating intra-cortical probe array by using micro electro-machining |
指導教授: | 陳順同 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 內皮層陣列腦波探針 、複合式精微電加工 、螺旋式放電加工 、鍍銀技術 、腦波波形 |
論文種類: | 學術論文 |
相關次數: | 點閱:191 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在針對擷取腦波訊號的內皮層陣列探針,提出一種複合式精微電加工(Hybrid micro electro-machining)的製程技術,此項技術包含兩部分:螺旋式放電加工(Spiral EDM)及鍍銀技術(Silver plating)。研究之初,以外徑ψ300μm碳化鎢棒材,對鉻銅(Cu-Cr)棒材進行螺旋式微孔放電,製成具陣列式微孔電極。再令鉻銅電極倒置夾持,對黃銅(Brass)電極(腦波探針素材)進行螺旋式放電,透由電極搖動、啄鑽運動與一系列精微放電加工參數的實驗,以獲得精確的內皮層陣列腦波探針,探針之尺寸規劃為:5×5陣列針數、探針高度350μm、探針尖端外徑50μm、探針錐率1:7。由實驗得知,採用兩段式電容放電加工,可獲得一適當的表面粗糙度Ra2.9μm,此表面粗糙度恰能提供針體對腦部皮層組織足夠的摩擦力,使探針不易脫落。完成的陣列探針,再輔以銀電法快速覆層,以便提高探針表面的電導度。實驗也證實,以批量式放電製作內皮層腦波陣列探針,可獲得最快的成形時間:3.1分/顆,比起單顆探針製作(5.8分/顆),約僅一半的加工時間。完成的內皮層陣列腦波探針進行腦波擷取實驗,所獲得的腦波訊號(α波, β波, θ波, δ波),包括波形強度及波形重現性,皆證實優於市售的腦波電極;而探針使用壽命經1000次插拔及50次的側向搖動測試後,發現探針仍能維持其原有的形狀精度,證實本研究所開發的內皮層陣列探針能精確應用於腦波訊號的量測,並且,所提複合式精微電加工法著實能應用於生醫領域。
This study presents the development of hybrid micro electro-machining technique in which spiral electrical discharge machining (EDM) and silver plating are employed to fabricate a penetrating intra-cortical probe array for detecting human brain activity. The probe owns a design of 5×5array micro pillar. The height, tip diameter, taper rate of each micro pillar and the inter-pillar spacing are 350µm, 50µm,1:7 and 550µm,respectively. A micro-holes array is first formed on a small rod-shaped copper-chromium (Cu-Cr) workpiece by using spiral EDM and micro tungsten carbide electrode with a 300μmdiameter. Spiral EDM operation is again employed to machine the penetrating intra-cortical probe array on a rod-shaped brass workpiece by applying the finished Cu-Cr electrode. After a series of spiral EDM experiments, it is found that two-step capacity discharge can achieve a surface roughness of Ra2.9μmon the pillar surface, which provides sufficient friction between the contact interfaces. Also, experimental results confirmed that batch spiral EDM can speed the fabrication of probe array up to 3.1 minutes each piece. This time is approaching half of the machining time for single probe array(5.8 minutes). To increase the conductivity of the probe array, silver plating process with 1μmin coating thickness is implemented. Experiment in human brain activity detection is conducted and obtained as α, β, θ and δ activities via the finished penetrating intra-cortical probe array. It was verified that the developed probe array used in the intensity and repeatability of the signal activity is superior to that of the existing commercial probe. After life tests with inserting/pulling out of 1000 times and waggling of 50 times, the form accuracy of the probe can still be kept demonstrated that the developed probe can really be used in measurement of human brain activity. Also, the proposed micro electro-machining technique can contribute significantly to the bio-medical field.
1. 工研院(Industrial Economics & Knowledge Center, IEK)產業情報網, 2014, http://ieknet.iek.org.tw/
2. S. Gollakota,H.A. Hassanieh, B. Ransford, D. Katabi, K. Fu, IMD Shield: Securing implantable medical devices, Massachusetts Institute of Technology, 2011
3. 737 Production list, Planespotters.net, Retrieved 2014-03-13,
http://www.planespotters.net/Production_List/Boeing/737/29099.html
4. 內政部警政署, 2014, http://www.npa.gov.tw/
5. 美國高速公路安全局(National Highway Traffic Safety Administration, NHTSA), http://www.nhtsa.gov/
6. R. Caton, The electric currents of the brain, British Medical Journal, Vol. 2, pp.278, 1875
7. R. Cooper, et al, EEG Technology, Butterworth, 3rd Edition, pp.1-2, 1980
8. 生醫應用微型感測器與模組之研究與發展, 吳順德, 電子月刊, spl.mt.ntnu.edu.tw, 2008
9. T. Nordhausen, M. Maynard, A. Normann, Single unit recording capabilities of a 100 microelectrode array, Brain Research 726, pp.129-140, 1996
10. T. Fofonoff, S. Martel, C. Wiseman, R. Dye, I. Hunter, N. Hatsopoulos, and J. Donoghue, A highly flexible manufacturing technique for microelectrode array fabrication, Proceedings of the second joint EMBS/BMES conference, pp.23-26, 2002
11. C.T. Lin, J.C. Chiou, L.W. Ko, T.P. Jung, S.F. Liang, J.L. Jeng, and C.T. Hong, Using Novel MEMS EEG Sensors in Detecting Drowsiness Application, IEEE Biomedical Circuits and Systems Conference (BioCAS 2006), London, England, Nov. 29-Dec. 1, 2006
12. T.P Jung, J. Sullivan, R. Deiss, G. Cauwenberghs, A brain-machine interface using dry-contact, low-noise EEG sensors, IEEE 978-1-4244-1684-4/08/$25.00, pp.1986-1989, 2008
13. S. Myllymaa, K. Myllymaa, H. Korhonen, J. Toyras, J.E. Jaaskelainen, K. Djupsund, H. Tanila, R. Lappalainen, Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials, Biosensors and Bioelectronics 24, pp.3067-3072, 2009
14. R. Bhandari, S. Negi, L. Rieth, F. Solzbacher, A wafer-scale etching technique for high aspect ratio implantable MEMS structures, Sensors and Actuators A, Vol.162, pp.130-136, 2010
15. L. Etholm, D. Arabadzisz, H. Lipp, P. Heggelund, Seizure logging: A new approach to synchronized cable-free EEG and video recordings of seizure activity in mice, L. Etholm et al./Journal of Neuroscience Methods 192, pp.254-260, 2010
16. C. Grozea, C. D. Voinescu, S. Fazli, Bristle-sensors-low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications, Journal of Neural Engineering, Vol.8, 025008, 2011
17. L. F. Wang, J. Q. Liu, B. Yang, C. S. Yang, PDMS-Based Low Cost Flexible Dry Electrode for Long-Term EEG Measurement, IEEE SENSORS JOURNAL, Vol. 12, No.9, pp.2898-2904, 2012
18. P. Salvo, R. Raedt, E. Carrette, D. Schaubroeck, J. Vanfleteren, L. Cardon, A 3D printed dry electrode for ECG/EEG recording, Sensors and Actuators A: Physical, Vol.174, pp.96-102, 2012
19. 郭哲希, 微機電技術應用於倒鉤狀乾式腦電波電極之研製, 國立臺灣大學機械工程學研究所學位論文, pp.57, 2012
20. W. Zhou, R. Song, X. Pan, Y. Peng, X. Qi, J. Peng, K. Hui, K. Hui, Fabrication and impedance measurement of novel metal dry bioelectrode, Sensors and Actuators A: Physical, Vol.201, pp.127–133, 2013
21. Y.Y. Hu , D. Zhu , N.S. Qu, Y. B. Zeng, P. M. Ming, Fabrication of high-aspect-ratio electrode array by combining UV-LIGA with micro electro-discharge machining, Microsyst Technol, Vol.15, pp.519-525, 2009
22. W. Zeng, Z. Wang, M. Weng, Y. Liu, Micro-electrode array and micro-hole array fabrication by combined micro-WEDM and EMMD, Digest journal of nanomaterials and biostructures, Vol.7, No.2, pp.755-761, 2012
23. W. Yuangang, Z. Fuling, W. Jin, Wear-resist Electrodes for Micro-EDM, Chinese Journal of Aeronautics 22, pp.339-342, 2009
24. U. Maradia, M. Boccadoro, J. Stirnimann, I. Beltrami, F. Kuster, K. Wegener, Die-sink EDM in meso-micro machining, Procedia CIRP 1 ,pp. 166-171, 2012
25. F. Klocke, M. Schwade, A. Klink, D. Veselovac, Analysis of material removal rate and electrode wear in sinking EDM roughing strategies using different graphite grades, The Seventeenth CIRP Conference on Electro Physical and Chemical Machining (ISEM), pp.164-168, 2013
26. 楊士緯, 高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究, 國立臺灣師範大學機電工程學研究所學位論文, pp. 35-61, 2013
27. M. Matteucci, R. Carabalona, M. Casella, E. Di Fabrizio, F. Gramatica,
M. Di Rienzo, E. Snidero, L. Gavioli, M. Sancrotti, Micropatterned dry electrodes for brain–computer interface, Microelectronic Engineering 84 , pp.1737–1740, 2007
28. W. C. Ng, H. L. Seet, K. S. Lee, N. Ning, W. X. Tai, M. Sutedja, J. Y. H. Fuh, and X. P. Li, Micro-spike EEG electrode and the vacuum-casting technology for mass production, Journal of materials processing technology, Vol.209, pp.4434-4438, 2009
29. Y.F. Chen, W.H. Pei, S.Y. Chen, X. Wu, S.S. Zhao, H. Wang, H.D. Chen, Poly(3,4-ethylenedioxythiophene) (PEDOT) as interface material forimproving electrochemical performance of microneedles array-baseddry electrode, Sensors and Actuators B 188, pp.747-756, 2013
30. T. Yuan, D. Chen, J. d. Chen, X. Chen, X. Wang, B. Lu, A novel MEMS elastic-based dry electrode for electroencephalography measurement, Microsyst Technol, 2013
31. MINDO腦科學研究中心, 2014, http://mindo.com.tw/tw/
32. 湯雅雯, 腦波量測系統之研製與腦波信號之非線性分析, 國立成功大學電機工程學研究所學位論文, pp. 53, 2005
33. C.T. Lin, L.D. Liao, Y.H. Liu, I.J. Wang, B.S. Lin, J.Y. Chang, Novel dry polymer foam electrodes for long-term EEG measurement, IEEE Transactions on Biomedical Engineering, Vol.58, No.5, pp.1200-1207, 2011
34. L.F. Wang, J.Q. Liu, X.X. Yan, B. Yang, C.S. Yang, A MEMS-based Pyramid Micro-needle Electrode for Long-term EEG Measurement, Microsyst Technol, pp.269-276, 2013
35. W. Zhou, R. Song, X. Pan, Y. Peng, X. Qi, J. Peng, K. Hui, K. Hui, Fabrication and impedance measurement of novel metal drybioelectrode , W. Zhou et al. / Sensors and Actuators A201, pp.127-133, 2013
36. J.C. Chiou, L.W. Ko, C.T. Lin, T.P. Jung, S.F. Liang, J.L. Jeng, and C.T. Hong, Using Novel MEMS EEG Sensors in Detecting Drowsiness Application, IEEE Biomedical Circuits and Systems Conference (BioCAS 2006), London, England, Nov. 29-Dec. 1, 2006
37. T. Kobayashi, M. Motoyama, H. Masuda , Y. Ohta, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, H. Tamura, Y. Ishikawa, S. Shiosaka, J. Ohta, Novel implantable imaging system for enabling simultaneous multiplanar and multipoint analysis for fluorescence potentiometry in the visual cortex, Biosensors and Bioelectronics 38, pp.321-330, 2012
38. T.C. Ferree, P. Luu, G.S. Russell, D.M. Tucker, Scalp electrode impedance, infection risk, and EEG data quality, Clinical Neurophysiology, Vol.112, pp.536-544, 2001
39. 曾柏翔, 應用於腦波研究之乾式電極開發, 國立臺灣師範大學機電工程學研究所學位論文 , pp. 19, 2006
40. L.F. Wang, J.Q. Liu, X.X. Yan, B. Yang, C.S. Yang, A MEMS-based pyramid micro-needle electrode for long-term EEG measurement, Microsyst Technol, pp.269-276, 2013
41. T. Fofonoff, S. Martel, C. Wiseman, R. Dye, I. Hunter, N. Hatsopoulos, and J. Donoghue, A highly flexible manufacturing technique for microelectrode array fabrication, Proceedings of the second joint EMBS/BMES conference, pp.23-26, 2002
42. 胃食道逆流, 中道自然醫學(非藥物)細胞自癒療法專輯, 2013,
http://www.ckwang.com.tw/n-gastro-303.html/
43. T. Masuzawa, Fundamentals of micro-EDM technology are summarized and the state of the art of the technology is overviewed, Proceedings of the 13th international symposium for electro-machining ISEM XIII, Vol1, pp.3-15, 2001
44. C. Sommer, Non-traditional machining handbook, Advance Publishing, Inc., pp.117-124, 2000
45. 吳育儒, 含硼聚晶鑽石輪刀開發與繞射階梯光柵模仁製作研究, 國立臺灣師範大學機電工程學研究所學位論文, pp.19, 2012
46. 蕭瑞陽, 放電加工原理與應用-精微雕模放電加工,
http://esha- re.stut.edu.tw/EshareFile/2010_4/2010_4_e1e12437.ppt/
47. 機械技術雜誌編輯部, 二十一世紀的顯學微機電系統(四)-微放電精密加工, 機械技術雜誌, pp.220-222, 2000
48. C. Saito, The construction and 100% operational skills of EDM (in Japanese), Mitsubishi Electric Ltd, pp.40-69, 1979
49. 日本Sodick株式會社, http://www.sodick.co.jp/
50. Sodick, NC放電加工機AP1L 加工篇, 使用說明書, Ver2.0, 2010
51. 蕭瑞陽, 放電加工原理與應用-精微線切割放電加工, http://esha- re.stut.edu.tw/EshareFile/2010_4/2010_4_e1e12437.ppt/
52. 黃瑋平, 低成本高剛性微型工具機開發與高精度陣列光學微模具製作研究, 國立臺灣師範大學機電工程學研究所學位論文, pp.33, 2011
53. 呂政峯編, 電鍍學, 世一書局, pp.10, 民82
54. 蘇癸陽編, 實用電鍍理論與實際, 復文出版社, pp. 96-98, 民88
55. 葉明桀, 懸臂式微型糖研工具開發與應用, 國立臺灣師範大學機電工程學研究所學位論文, pp.7-10, 2009
56. 台灣維新影子政府, 陳教授的部落格-從神經醫學到社會參與, 2009, http://www.shadowgov.tw/
57. 探索腦部及脊髓, 2004, http://www.dls.ym.edu.tw/neuroscience/
58. W. F. Ganong, Review of medical physiology 10th ed, Lange Medical Publications, 1981
59. 曾柏翔, 應用於腦波研究之乾式電極開發, 國立臺灣師範大學機電工程學研究所學位論文, pp. 9, 2006
60. N. Schaul, The fundamental neural mechanisms of electroenc- ephalography, Electroencephalography and clinical Neurophysiology, Vol. 106, pp.101-107, 1998
61. T. Togawa, T. Tamura, P. A. Oberg, Biomedical Transducers and Instruments, CRC Press LCC, 1997
62. G.P. furtscheller, F.H. Lopes, Event-related EEG/MEG synchronization and desynchronization:basic principles, No.6 Clinical Neurophysiology, Vol. 110, pp.1842-2857, 1999
63. 許世昌, 新編解剖生理學, 永大書局有限公司, 1999
64. 臺灣機械工業同業公會, 放電加工技術趨勢與分析, 2014,
http://www.tami.org.tw/
65. Sodick, NC放電加工機AP1L premium, 使用說明書, Ver3.0, 2008
66. 慶鴻機電工業股份有限公司, CNC線切割放電加工機, 線切割機保養手冊, B1 edition, 2008
67. 台中精機, 立式綜合加工機, http://www.or.com.tw/
68. 工具顯微鏡, 漢磊股份有限公司, http://www.aixon.com.tw/
69. 掃描式電子顯微鏡, JEOL- Scanning Electron Microscopes,
http://www.jeol.com/Default.aspx?tabid=36
70. 3D雷射共軛焦顯微鏡, OLYMPUS,
http://www.olympus-ims.com/en/metrology/ols4000/
71. TrueSense Exploration Kit 說明書,
http://www.op-innovations.com/zh-hant/TSKdesc
72. Y. Wang, F. Zhao, J. Wang, Wear-resist Electrodes for Micro-EDM, Chinese Journal of Aeronautics, Vol.22, pp.339-342, 2009
73. H. J. Scussel, Friction and wear of cemented carbides, ASM handbook, Vol.18, ASM Int., pp.795, 1992
74. 金通用銅材股份有限公司:http://www.cu-alloy.com.tw
75. 元祥金屬工業股份有限公司:http://www.yhm.com.tw
76. 王大倫, 實用電鍍學(譯), 徐氏文教基金會出版, pp.259, 1993
77. G. Rizzoni, Principle and application of electrical engineering, The McGraw-Hill Companies, Inc, 2nd edition, 1996
78. Hassan Abdel-Gawad El-Hofy, Fundamentals of machining processes: conventional and nonconventional processes, 2nd edition, pp.393, 2013
79. 張渭川(譯), 放電加工的結構與實用技術, 全華科技圖書股份有限公司, 1996
80. 齋藤長男, 放電加工のしくみと100%活用法, 三菱電機(株), pp.40-67, 1979
81. L.F. Wang, J.Q. Liu, X.X. Yan, B. Yang, C.S. Yang, A MEMS-based pyramid micro-needle electrode for long-term EEG measurement, Microsyst Technol, pp.269-276, 2013
82. Overview of materials for brass, MatWeb, http://www.matweb.com
83. 葉明桀, 懸臂式微型糖研工具開發與應用, 國立臺灣師範大學機電工程學研究所學位論文, pp.7-10, 2009
84. 王大倫, 實用電鍍學(譯), 徐氏文教基金會出版, pp.270, 1993
85. A.N. Annaidh, M. Ottenio, K. Bruyere, M. Destrade, M.D. Gilchrist, Mechanical properties of excised human skin, 6th World Congress of Biomechanics(WCB), Vol.31, pp.1000-1003, 2010