簡易檢索 / 詳目顯示

研究生: 曹長安
Chang-An Tsao
論文名稱: 氧化鋅奈米線輔助電沉積法成長氧化鎢薄膜之電致色變性質研究
Fabrication of electrochromic tungsten oxide thin film by electrodeposition method assisted with zinc oxide nanwires
指導教授: 程金保
Cheng, Chin-Pao
黃柏仁
Huang, Bohr-Ran
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: 氧化鎢薄膜電致色變電沉積法氧化鋅奈米線
英文關鍵詞: tungsten oxide film, electrochromic, electrodeposition, zinc oxide nanowires
論文種類: 學術論文
相關次數: 點閱:157下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電沉積法製備氧化鎢電致色變層,並輔以氧化鋅奈米線,應用於電致色變元件。本實驗分五部份進行,第一部份為使用定電流法沉積氧化鎢薄膜,第二部分使用定電壓法沉積氧化鎢薄膜,第三部分探討不同沉積時間對氧化鎢薄膜的影響。第四部份將試片去做退火熱處理,觀察結晶對電致色變性質的影響。最後部份為成長氧化鋅奈米線,先以濺鍍法在基板上沉積一層摻鋁的氧化鋅薄膜作為種子層,再以水熱法成長氧化鋅奈米線。將不同條件下成長的氧化鋅奈米線以穿透式電子顯微鏡觀察其表面形貌,再量測其穿透率,其穿透率隨成長時間上升而下降,成長15分鐘的氧化鋅奈米線穿透率已下降到70%。最後在不同基板上成長氧化鋅奈米線,以電沉積法在其上方沉積氧化鎢薄膜,觀察氧化鋅奈米線與電致色變的相關性。定電壓法沉積出之薄膜較定電流厚,退火後會使電致色變效果變差。沉積在摻鋁氧化鋅奈米線上的薄膜有最佳的電致色變性質,其著色效率可達15.40 cm2/C。

    Electrodeposition method to fabricate WO3 electrochromic film which assisted with zinc oxide nanwire is used in this study. This study can be divided into five part. First, used constant current method to deposit WO3 film. Second, used constant voltage method to deposite WO3 film. Third, made different deposition time of WO3 film. Fourth, treated sample by annealing, and to observe the effect of electrochromic about crystal. Finally, grow AZO nanowires on the sputtering AZO film as seed layer by hydrothermal method. The microstructure and measurement transmittance of different AZO nanowires is observed by SEM. The transmittance decrease with the growing time increased. The transmittance decrease to 70% of AZO nanowires growing for 15 minute. The thickness of WO3 film by constant voltage is more large than constant current. Annealing will decrease the electrochromic effect. The film which deposit on AZO nanowise has the best electrochromic effect, the coloration efficiency can arrive 15.40 cm2/C.

    目錄 第一章 序論.......................................1 1.1 研究背景..................................1 1.2 研究動機與目的..........................3 第二章 文獻回顧...............................................................................................5 2.1 電致色變元件..........................................................................................5 2.2 電致色變材料..........................................................................................7 2.3 電致色變機制........................................................................................10 2.4 電致色變層製備方法............................................................................12 2.5 電沉積法製備氧化鎢薄膜....................................................................14 2.6 水熱法成長氧化鋅奈米線....................................................................18 第三章 實驗方法與步驟.................................................................................24 3.1實驗藥品與耗材.....................................................................................24 3.2實驗流程規劃.........................................................................................25 3.2.1 電沉積法鍍液製備.........................................................................26 3.2.2 試片清洗.........................................................................................27 3.2.3 電沉積法製備氧化鎢電致色層.....................................................27 3.2.4 水熱法成長氧化鋅奈米線….........................................................28 3.2.5 電解液調配.....................................................................................30 3.3特性分析.................................................................................................31 3.3.1薄膜表面及微結構分析..................................................................31 3.3.2 X-ray繞射分析................................................................................31 3.3.3電化學分析......................................................................................31 3.3.4光學性質量測..................................................................................32 第四章結果與討論...........................................................................................33 4.1 定電流法沉積氧化鎢薄膜..................................................................33 4.1.1 SEM表面形貌分析.........................................................................33 4.1.2 AFM分析………............................................................................35 4.1.3 循環伏安法分析.............................................................................37 4.1.4 光學性質分析.................................................................................39 4.2 定電壓法沉積氧化鎢薄膜..................................................................43 4.2.1 SEM表面形貌分析.........................................................................43 4.2.2 AFM分析….……............................................................................45 4.2.3循環伏安法分析..............................................................................47 4.2.4光學性質分析..................................................................................48 4.3 不同沉積時間對氧化鎢薄膜的影響..................................................51 4.3.1 SEM表面形貌分析.........................................................................51 4.3.2 AFM分析…………….....................................................................54 4.3.3 循環伏安法分析.............................................................................56 4.3.4 光學性質分析.................................................................................57 4.4 退火熱處理..........................................................................................61 4.4.1 SEM表面形貌分析........................................................................61 4.4.2 AFM分析……………....................................................................62 4.4.3 XRD薄膜晶體結構分析................................................................64 4.4.4循環伏安法分析.............................................................................66 4.4.5光學性質分析.................................................................................67 4.5 氧化鋅奈米線......................................................................................69 4.5.1 SEM表面形貌分析........................................................................69 4.5.2 XRD薄膜晶體結構分析................................................................71 4.5.3循環伏安法分析.............................................................................72 4.5.4光學性質分析.................................................................................73 4.6綜合討論……......................................................................................77 第五章 結論與展望.........................................................................................78 5.1 結論......................................................................................................78 5.2 未來展望..............................................................................................79 參考文獻...........................................................................................................80 圖目錄 圖1.1 電致色變節能窗應用於建築體之實例...…………………………….2 圖1.2 電致色變應用…………………………………………………………4 圖2.1 典型電致色變元件基本結構示意圖…………………………………6 圖2.2 電致色變層著去色情形………………………………………………6 圖2.3 液晶電致色變顯示器…………………………………………………8 圖2.4 導電聚合物電致色變元件……………………………………………8 圖2.5 氧化鎢之單位晶胞示意圖…………………………………………..11 圖2.6 結構導向劑製作氧化鎢薄膜: (a) (b)不同比例PEG與酒精表面微 結構與(c)電致色變性質…………………………………………….16 圖2.7 氧化鋅奈米柱電極作為氧化鎢電致色變元件:(a)奈米線電極表面 微結構;(b)濺鍍氧化鎢於奈米線電極表面微結構;(c) 電致色變元 件著去色態(d)響應時間……………………………………………..17 圖2-8 氧化鋅晶體結構……………………………………………………..19 圖2-9 水熱法與其它製程之壓力溫度比較………………………………..21 圖2-10 種子層對成長氧化鋅奈米線之影響:(a) 無種子層;(b) 有種子 層…………………………………………………………………….23 圖2-11 氧化鋅奈米線成長過程…………………………………………….23 圖3.1 電沉積法實驗流程……………………………………………………25 圖3.2 氧化鋅奈米線製備流程………………………………………………26 圖3.3 調配鍍液流程…………………………………………………………27 圖3.4 電沉積法裝置示意圖…………………………………………………28 圖3-5 氧化鋅奈米線製備流程……………………………………………...29 圖3-6 試片裝置……………………………………………………………...29 圖3-7 水熱法成長設備……………………………………………………...30 圖3.7 循環伏安電位測定裝置示意圖………………………………………32 圖4.1 電沉積氧化鎢薄膜表面結構SEM圖: (a)8 (b)10 (c)12 (d) 14 mA….34 圖4.2 電沉積氧化鎢薄膜SEM側視圖: (a)8 (b)10 (c)12 (d) 14 mA……….34 圖4.3電沉積氧化鎢薄膜SEM側視圖: (a)8 (b)10 (c)12 (d) 14 mA………..36 圖4.4不同電流下沉積氧化鎢薄膜之CV圖: (a)8 (b)10 (c)12 (d) 14 mA….39 圖4.5 電沉積氧化鎢薄膜著去色光譜圖: (a)8 (b)10 (c)12 (d) 14 mA……..43 圖4.6 電沉積氧化鎢薄膜表面結構SEM圖: (a)4 (b)5 (c)6 (d)7 V………..45 圖4.7 電沉積氧化鎢薄膜SEM側視圖: (a)4 (b)5 (c)6 V…………………..45 圖4.8 電沉積氧化鎢薄膜AFM圖:(a)4 (b)5 (c)6 (d)7 V………………….47 圖4.9 不同電壓下沉積氧化鎢薄膜之CV圖: (a)4 (b)5 (c)6 V……………..49 圖4.10 電沉積氧化鎢薄膜著去色光譜圖: (a)4 (b)5 (c)6 V………………..52 圖4.11 沉積過長時間(90 s)導致薄膜龜裂之SEM圖……………………...54 圖4.12 電沉積氧化鎢薄膜表面結構SEM圖: (a)30 (b)40 (c)50 (d) 60 s…..54 圖4.13 電沉積氧化鎢薄膜SEM側視圖: (a)30 (b)40 (c)50 (d) 60 s……….55 圖4.14 電沉積氧化鎢薄膜厚度與時間比較圖……………………………..55 圖4.15 沉積不同時間氧化鎢薄膜之AFM圖:(a)30 (b)40 (c)50 (d) 60 s…57 圖4.16 沉積不同時間氧化鎢薄膜之CV圖: (a)30 (b)40 (c)50 (d) 60 s…....60 圖4.17 電沉積氧化鎢薄膜著去色光譜圖: (a)30 (b)40 (c)50(d) 60 s………63 圖4.18 電沉積氧化鎢薄膜表面結構SEM圖: (a)未退火 (b)200度(c)400 度………………………………………………………………...…..64 圖4.19 電沉積氧化鎢薄膜之AFM圖:(a)未退火 (b)200度(c)400度…..66 圖4.20 電沉積氧化鎢薄膜經退火熱處理一小時後之XRD圖:(a)400度 退火 (b)200度退火 (c)未退火……………………………………..68 圖4.21 不同溫度退火後之氧化鎢薄膜CV圖: (a)未退火 (b)200度 (c)400’ 度….………………………………………………………………...70 圖4.22 不同溫度退火一小時後之氧化鎢薄膜著去色光譜圖: (a)未退火 (b)200度 (c)400度…………………………………………………72 圖4.23 水熱法成長氧化鋅奈米線5分鐘之SEM圖: (A)50k (B)100k……73 圖4.24 水熱法成長氧化鋅奈米線10分鐘之SEM圖: (A)50k (B)100k…..74 圖4.25 水熱法成長氧化鋅奈米線15分鐘之SEM圖: (a)50k (b)100k…….74 圖4.26 水熱法成長氧化鋅奈米線15分鐘之SEM側視圖…………………74 圖4.27 氧化鋅奈米線上沉積氧化鎢薄膜之SEM(a)正面圖(b)側視圖…...75 圖4.28 水熱法成長氧化鋅奈米線10分鐘之XRD圖……..………………75 圖4.29 氧化鎢薄膜沉積在不同基板上之CV圖: (a)ITO (b)AZO薄膜(c) AZO奈米線………………………………………………………….77 圖4.30 水熱法成長不同時間摻鋁氧化鋅奈米線之穿透率光譜圖: (a)5 (b) 10 (c)15 min………………………………………………………….79 圖4.31氧化鎢薄膜沉積在不同基板上之CV圖: (a)ITO (b)AZO薄膜(c) AZO奈米線………………………………………………………….80 表目錄 表2.1 常見過渡金屬氧化物的變色方式及性質…………………………….9 表2-2 氧化鋅物理性質特性………………………………………………...18 表2-3 氧化鋅應用範圍…………………………………………………...…19 表2-4 氧化鋅奈米線的成長方法…………………………………………...22 表3.1 化學藥品資料表………………………………………………………24 表4.1 定電流下沉積氧化鎢薄膜之各項重要參數…………………………41 表4.2 定電壓下沉積氧化鎢薄膜之各項重要參數…………………………51 表4.3 沉積不同時間下氧化鎢薄膜之各項重要參數………………………61 表4.4 電氧化鎢薄膜沉積在不同基板上之各項重要參數…………………70

    參考文獻
    1. http://web2.moeaboe.gov.tw/ECW/Policy/EnergyMeeting/defalult.htm
    2. 鄭耕哲, ”電致色變智慧型節能窗之特性與發展現況”, 工業材料雜誌,290期 ,pp.102-109(2011)
    3. http://windows.lbl.gov/comm_perf/Electrochromic/ec_tech.html
    4. 內政部營建署,“建築節能法規解說”, (1998)
    5. http://www.zh-kv.com/Kaivo/Products.asp?ID=25
    6. C.G. Granqvist , A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindstrtm,G.A. Niklasson, C.G. Ribbing, D. RiSnnow, M. Strmme Mattsson, M. Veszelei, “Towards the smart window: progress in electrochromics”, Journal of Non-Crystalline Solids , Vol. 218 , pp.273-279 (1997)
    7. J. Livage, D.Ganguli, ” Sol-gel electrochromic coatings and devices:A review”, Solar Energy Materials & Solar Cells, Vol. 68, pp. 365-381 (2001)
    8. S.K. Deb, “A Novel Electrophotographic system”, Appl.optics, Suppl.,Vol. 3, pp. 192 (1969)
    9. K.S. Bae, U. Cha, Y.J. Lee, Y.K. Moon, H.C. Choi, J.H. Kim, C.-J. Yu,” Single pixel transmissive and reflective liquid crystal display using broadband cholesteric liquid crystal film”, Optics Express, Vol. 19, pp. 8291-8296 (2011)
    10. R.M. Osuna, V. Hernndez, J.T. Navarrete, E. Kauppinen, V. Ruiz, ” Ultrafast and High-Contrast Electrochromism on Bendable Transparent Carbon Nanotube Electrodes”, J. Phys. Chem. Lett., Vol. 1, pp. 1367–1371 (2010)
    11. K. Bange, "Colouration of tungsten oxide films: A model for optically active coatings", Solar Energy Materials & Solar Cells, Vol. 58, pp. 1-131 (1999)
    12. H. Huanga, J. Tiana, W. K. Zhanga, Y. P. Gana, "Electrochromic properties of porous NiO thin film as a counter electrode for NiO /WO3 complementary electrochromic window", Electrochimica Acta, Vol. 56, pp.4281–4286 (2011)
    13. http://zh.wikipedia.org/wiki/%E4%B8%89%E6%B0%A7%E5%8C%96%E9%92%A8
    14. K. Bange, "Colouration of tungsten oxide films: A model for optically active coatings", Solar Energy Materials & Solar Cells, Vol. 58, pp. 1-131 (1999)
    15. Muller, “U. Inorganic Structural Chemistry; John Wiley & Sons: Chichester, U.K. (1993)
    16. E. Khoo, P.S. Lee, J. Ma,"Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application",Journal of the European Ceramic Society, Vol. 30, pp1139–1144 (2010)
    17. B. W. Faughnan, R. S. Crandall, P. M. Heyman, "Electrochromism in WO3 Amorphous Films", RCA Review, Vol. 36, pp. 177-197 (1975)
    18. J.M. Honig, in: S. Trasatti (Ed), Electrodes of Conductive Metallic
    Oxides, Elsevier, Amsterdam, (1980)
    19. S. K. Deb, "Optical and Photoelectric Properties and Color Centers in Thin Films of Tungsten Oxide", Philosophical Magazine, Vol. 27, pp. 801-822 (1973)
    20. A.K. Chawla, S. Singhal, H.O. Gupta, R. Chandra,” Effect of sputtering gas on structural and optical properties of nanocrystalline tungsten oxide films”, Thin Solid Films, Vol. 517, pp. 1042-1046 (2008)
    21. C. Trimble, M. DeVries, J.S. Hale1, D.W. Thompson, T.E. Tiwald, J.A. Woollam, “Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide”, Thin Solid Films, Vol. 355, pp. 26 -34 (1999)
    22. A. Subrahmanyam, A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin film”, Solar Energy Materials & Solar Cells, Vol 91, pp. 266 – 274 (2007)
    23. S.A. Agnihotry, Rashmi, R. Ramchandran, S. Chandra, “Pre-existence of HxWO3 in e-beam deposited WO3 films”, Solar Energy Materials & Solar Cells, Vol. 36, pp. 289 – 294 (1995)
    24. J.L. Solisa, A. Hoel, V. Lantto, C.G. Granqvist, “Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition”, J. Appl. Phys., Vol. 89, pp. 2727 – 2732 (2001)
    25. D. Gogova, L. K.Thomas, B. Camin, “Comparative study of gasochromic and electrochromic effect in thermally evaporated tungsten oxide thin films”, Thin Solid Films, Vol. 517, pp. 3326-3331 (2009)
    26. M. Deepa , A.K. Srivastava, S.N. Sharma, Govind, S.M. Shivaprasad, ” Microstructural and electrochromic properties of tungsten oxide thin films produced by surfactant mediated electrodeposition”, Applied Surface Science , Vol. 254, pp. 2342–2352 (2008)
    27. M. Deepa, M. Kar, D.P. Singh, A.K. Srivastava, “Influence of polyethyleneglycol template on microstructure and electrochromic properties of tungsten oxide”, Solar Energy Materials & Solar Cells, Vol. 92, pp.170-178 (2008)
    28. M.Wang, G. Fang, L.Yuan, H.Huang, Z. Sun, N. Liu, S.Xia, X. Zhao, “High optical switching speed and flexibleelectrochromic display based on WO3 nanoparticles with ZnO nanorod arrays supported electrode”, Nanotechnology ,Vol. 20, pp. 2-6 (2009)
    29. Y. Li, G. S. Tompa, S. Liang, C. Gorla, C. Lu, and J. Doyle, Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition, Journal of Vacuum Science & Technology A, Volume 15, pp. 1063-1068 (1997).
    30. M. Liu, A. H. Kitai, and P. Mascher, Point defects and luminescence
    centres in zinc oxide and zinc oxide doped with manganese, Journal of Luminescence, Volume 54, pp. 35-42 (1992).
    31. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Recent progress in processing and properties of ZnO, Progress in Materials
    Science, Volume 50, pp. 293-340 (2005).
    32. J. Jagadish and S.J. Pearton, Zinc Oxide Bulk, Thin Film and
    Nanostructures, Elsevier (2006).
    33. K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, Understanding
    the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, Journal of Materials Chemistry, Volume
    14, pp. 2575 - 2591 (2004).
    34. K. Byrappa and T. Adschiri, Hydrothermal technology for
    nanotechnology, Progress in Crystal Growth and Characterization of
    Materials, Volume 53, pp. 117-166 (2007).
    35. L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO
    from Aqueous Solutions, Advanced Materials, Volume 15, pp.
    464-466 (2003).
    36. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris,
    J. Pham, R. He, and H. J. Choi, Controlled Growth of ZnO Nanowires
    and Their Optical Properties, Advanced Functional Materials,
    Volume 12, pp. 323–331 (2002).
    37. M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, Fabrication and
    optical properties of large-scale uniform zinc oxide nanowire arrays by
    one-step electrochemical deposition technique, Chemical Physics
    Letters, Volume 363, pp. 123-128 (2002).
    38. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Growth mechanisms
    for ZnO nanorods formed by pulsed laser deposition, Superlattices and
    Microstructures, Volume 39, pp. 33-40 (2006).
    39. W. Lee, M. C. Jeong, and J. M. Myoung, Catalyst-free growth of ZnO
    nanowires by metal-organic chemical vapour deposition(MOCVD) and
    thermal evaporation, Acta Materialia, Volume 52, pp.3949-3957 (2004).
    40. Z. L. Wang, ZnO nanowire and nanobelt platform for
    nanotechnology, Materials Science and Engineering R, Volume 64, pp.
    33–71 (2009).
    41. D. Polsongkram, P. Chamninok, S. Pukird , L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, "Effect of synthesis conditions on
    the growth of ZnO nanorods via hydrothermal method", Physica B,
    Volume 403, pp. 3713-3717 (2008).
    42. J. Song and S. Lim, "Effect of Seed Layer on the Growth of ZnO
    Nanorods", The Journal of Physical Chemistry C, Volume 111, pp.
    596-600 (2007).
    43. X. Sun , H. Cao, Z. Liu, J. Li,” Influence of annealing temperature on microstructure and optical properties of sol–gel derived tungsten oxide films” ,Applied Surface Science , Vol. 255, pp. 8629–8633 (2009 )
    44. M. Deepa, T.K. Saxena, D.P. Singh, K.N. Sood, S.A. Agnihotry, “Spin coated versus dip coated electrochromic tungsten oxide films:Structure, morphology, optical and electrochemical properties”, Electrochimica Acta, Vol. 51, pp. 1974–1989 (2006)
    45. K. Huang, J. Jia, Q. Pan, F. Yang, D. He, ” Optical, electrochemical and structural properties of long-term cycled tungsten oxide films prepared by sol–gel”, Physica B, Vol. 396 , pp.164–168 (2007)
    46. P.V. Ashrit, G. Bader, Vo-Van Truong, “Electrochromic properties of
    nanocrystalline tungsten oxide thin films”, Thin Solid Films, Vol. 320, pp. 324-328 (1998)
    47. M. Deepa, M. Kar, S.A. Agnihotry, “Electrodeposited tungsten oxide films
    : annealing effects on structure and electrochromic performance”, Thin Solid Films, Vol. 468, pp.32– 42(2004)

    下載圖示
    QR CODE