研究生: |
王君倫 Wang, Chun-Lun |
---|---|
論文名稱: |
拓樸絕緣體之微波元件研究 The Study of Topological Insulator Microwave Devices |
指導教授: |
江佩勳
Jiang, Pei-hsun |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 拓樸絕緣體 、硒化鉍 、Bi_2Se_3 、微波量測 、寬頻 、S 參數 、共平面波導 、集總電路 、微波導線 |
英文關鍵詞: | topological insulators, bismuth selenide, Bi_2Se_3, broad-band, S-parameter, lumped circuit |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討拓樸絕緣體的微波實驗,材料主要是硒化鉍(bismuth selenide,Bi_2Se_3),文中提出與其他團隊研究不同的寬頻微波量測方法,目的在於研究微波寬頻頻譜下拓樸絕緣體的動態行為。本文亦包含有關微波實驗中儀器的設置,因實驗需求本實驗需改裝實驗樣品量測桿以符合低溫微波量測之需求,包含微波接頭設計、製作,微波導線裝設等。文中呈現拓樸絕緣體 Bi_2Se_3 薄膜的低溫電阻率量測,並探討微波實驗中,共平面波導對於 S 參數的影響,模擬共平面波導之集總電路(lumped circuit)模型。
The purpose of this dissertation was to investigate the behavior of topological insulator bismuth selenide,Bi_2Se_3 , at low temperature. The idea of microwave broadband measurement of topological insulators is proposed in this dissertation. The installation of our low temperature microwave instruments are mentioned, including the design of 2.9 mm connectors for the sample probe and the semi-rigid cables installation for the sample probe. The low temperature resistivity measurement is also presented. Last, the characteristic of the coplanar waveguide affects the results of our microwave measurements. The lumped circuit model of our coplanar waveguide pattern is discussed.
[1] A. Carrington, I. J. Bonalde, R. Prozorov, R. W. Giannetta, A. M. Kini, J. Schlueter, H. H. Wang, U. Geiser, and J. M. Williams, Phys. Rev. Lett. 83, 4172 (1999).
[2] L. W. Engel, D. Shahar, Q. Kurdak, and D. C. Tsui, Phys. Rev. Lett. 71, 2638 (1993).
[3] M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) .
[4] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).
[5] H. L. Stormer and D. C. Tsui, Science 220, 1241(1983).
[6] S.-Q. Chen, C. -J. Zhao, Y. Li, H. -H. Huang, S.- B. Lu, H. Zhang, and S. -C. Wen, Opt. Mater. Express 4, 587 (2014).
[7] A. M. Shuvaev, G. V. Astakhov, G. Tkachov, C. Brüne, H. Buhmann, L.W. Molenkamp, and A. Pimenov, Phys. Rev. B, 87,121104 (2013).
[8] A. Wolos, S. Szyszko, A. Drabinska, M. Kaminska, S. G. Strzelecka, A. Hruban, A. Materna, and M. Piersa, Phys. Rev. Lett. 109, 247604 (2012).
[9] O. E. Ayala-Valenzuela, J. G. Analytis, J. -H. Chu, M. M. Altarawneh, I. R. Fisher, and R. D. McDonald, arXiv:1004.2311v1.
[10] M. M. Altarawneh, C. H. Mielke, and J. S. Brooks, Rev. Sci. Inst. 80, 066104 (2009).
[11] S. Cox, R. D. McDonald, M. Armanious, P. Sengupta, and A. Paduan-Filho, Phys. Rev. Lett. 101, 087602 (2008).
[12] C.-Y. Chen, Z. -J. Xie, Y. Feng, H.-M. Yi, A. -J. Liang, S. -L. He, D. -X. Mou, J. -F. He, Y. -Y. Peng, X. Liu, Y. Liu, L. Zhao, G. -D. Liu, X. -L. Dong, J. Zhang, L. Yu, X. -Y. Wang, Q. -J. Peng, Z. -M. Wang, S.- J. Zhang, F. Yang, C. -T. Chen, Z. -Y. Xu, and X. -J. Zhou, Scientific Reports 3, 2411 (2013).
[13] T. Zhang, P. Cheng, X. Chen, J. -F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q. K. Xue, Phys. Rev. Lett. 103, 267205 (2009)..
[14] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[15] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[16] Patrick A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)
[17] Y. Xia, D. Qian, D. Hsieh, L.Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nat. Phys. 5, 18 (2009).
[18] H. Steinberg, D. R. Gardner, Y. S. Lee, and P. Jarillo-Herrero, Nano Lett. 10, 5032 (2010).
[19] K. Eto, Z. Ren, A. A. Taskin, K. Segawa, and Y. Ando, Phys. Rev. B 81, 195309 (2010).
[20] J. G. Analytis, J. -H. Chu, Y. -L. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B 81, 205407 (2010).
[21] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B 81, 241301(R) (2010).
[22] A. A. Taskin, K. Segawa, and Y. Ando, Phys. Rev. B 82, 121302(R) (2010).
[23] A. A. Taskin and Y. Ando, Phys. Rev. B 80, 085303 (2009).
[24] H. Köhler, Phys. Status Solidi B 58, 91 (1973).
[25] S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys. Condens. Matter 9, 461(1997).
[26] Y. Yan, Z. -M. Liao, Y. -B. Zhou, H. -C. Wu, Y. -Q. Bie, J. -J. Chen, J. Meng, X. -S. Wu, and D. -P. Yu, Scientific reports 3,1264 (2013).
[27] L. He, F. Xiu, X. Yu, M. Teague, W. Jiang, Y. Fan, X. Kou, M. Lang, Y. Wang, G. Huang, N. -C. Yeh, and K. L. Wang, Nano Lett. 12, 1486 (2012).
[28] D. Shoenberg (1984) , Magnetic Oscillations in Metals, Cambridge University Press, Cambridge.
[29] M. Petrushevsky, E. Lahoud, A. Ron, E. Maniv, I. Diamant, I. Neder, S. Wiedmann, V. K. Guduru, F. Chiappini, U. Zeitler, J. C. Maan, K. Chashka, A. Kanigel, and Y. Dagan, Phys. Rev. B 86, 045131 (2012).
[30] D. -X. Qu, Y. -S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science 329, 821 (2010)..
[31] K. Shrestha, V. Marinova, B. Lorenz, and Paul C. W. Chu, Phys. Rev B 90, 241111 (2014).
[32] K. Kurokawa, IEEE Transactions on Microwave Theory and Techniques 13, 194 (1964).
[33] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004)
[34] D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, Appl. Phys. Lett. 96, 053107 (2010).
[35] D. Teweldebrhan, V. Goyal, and A. A. Balandin. Nano Lett. 10,1209 (2010).
[36] N. Bansal, Y. S.Kim, M. Brahlek, E. Edrey, and S.-S. Oh, Phys. Rev. Lett. 109, 116804 (2012)
[37] J. G. Analytis, R. D. McDonald, S. C. Riggs, J. -H. Chu, G. S. Boebinger, and I. R. Fisher, Nat. Phys. 6, 960 (2010).
[38] K. Steinberg, M. Scheffler, and M. Dressel. J. Appl. Phys. 108, 096102 (2010)
[39] D. Pozar (2005) .Microwave Engineering. United States of America. Wiley.