簡易檢索 / 詳目顯示

研究生: 朱晏頤
Chu Yen-Yi
論文名稱: 含十六族元素之同核(釕)和異核(釕-銅/鉻-錳)金屬羰基團簇物之合成及反應性暨電化學、電子吸收光譜與理論計算探討
Homo- (Ru) and Heterometallic (Ru─Cu/Cr─Mn) Carbonyl Chalcogenide Clusters: Synthesis, Reactivity, Electrochemistry, UV/Vis Absorption, and Computational Studies
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 406
中文關鍵詞: 金屬團簇物十六族元素羰基電化學
英文關鍵詞: Cluster, Chalcogenide, Ruthenium, Copper, Carbonyl, Electrochemistry
論文種類: 學術論文
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1. E/Ru/CO (E = Se, Te) 系統之研究
    利用 K2EO3 (E = Se, Te) 與 Ru3(CO)12 於氫氧化鉀甲醇溶液反應,可得到四面體化合物 [HERu3(CO)9]─,若將 K2EO3 (E = Se, Te) 與 Ru3(CO)12 以不同的莫耳比於甲醇溶液中加熱反應,則可得到八面體團簇物 [ERu5(CO)14]2─ 和 [HSe2Ru4(CO)10]─ 以及新穎之多核團簇物 [Te4Ru8(CO)19]2─ 與 [(H)2Se4Ru6(CO)12]2─;若將反應溶劑改為混合乙腈與甲醇之溶液,則可得到高敏感性化合物 [E2Ru4(CO)10]2─。此外,錯合物 [HERu3(CO)9]─ 可進一步與Ru3(CO)12 反應擴核形成八面體化合物 [ERu5(CO)14]2─,若將其置於鹼性條件則轉換成化合物 [E2Ru4(CO)10]2─,再者,化合物 [E2Ru4(CO)10]2─ 可分別與 K2EO3 (E = Se, Te) 反應,繼續擴核成團簇物 [Te4Ru8(CO)19]2─ 和 [(H)2Se4Ru6(CO)12]2─。除此之外,本研究亦藉由理論計算進一步探討此系列團簇物之結構轉換。

    2. Se/Ru/ROH (R = Me, Et) 系統之研究
    含氫配子之硒釕八面體團簇物 [(-H)Ru4(CO)10Se2]─ 和 [(3-H)Ru5(CO)14Se]─ 分別與一氧化碳及二氧化碳於 ROH 溶液中反應,可成功將一氧化碳嵌入 ROH 之 C─O 鍵或將二氧化碳嵌入 ROH 之 O─H 鍵,生成新穎之多核團簇物[{(-H)Ru4(CO)10Se2}2{Ru2(CO)4(-1:1-OOCR)}]3─和[{(-H)Ru4(CO)10Se2}2{Ru2- (CO)4(-1:1-OOCOR)}]3─ (R = Me, Et),藉由一系列實驗與理論計算加以驗證此選擇性嵌入的結果,係經由氫配子、多電子之釕金屬、帶電負性之硒原子以及團簇物之對稱性所結合之協同效應促使而成。本研究不僅提供捕捉一氧化碳及二氧化碳新的途徑亦首次發表含 RCOO─ 及 ROCOO─ 配子之硒釕團簇物之有效的合成方式。

    3. Se/Ru/CuX (X = Cl, Br, I) 系統之研究
    利用含硒之釕八面體化合物 [SeRu5(CO)14]2─ 與不同當量之鹵化亞銅於適當條件中反應可成功合成出一系列單銅蓋接八面體團簇物 [SeRu5(CO)14CuX]2─ (X = Cl, Br, I)、雙銅蓋接團簇物 [SeRu5(CO)14(CuX)2]2─ (X = Cl, Br)、雙銅橋接團簇物 [Se2Ru4(CO)10(CuX)2]2─ (X = Cl, Br, I)以及四銅橋接之雙八面體化合物 [Se2Ru10(CO)28Cu4X2]2─ (X = Cl, Br)。為探討此系列團簇物之轉換關係,將單銅蓋接化合物 [SeRu5(CO)14CuX]2─ 與 CuX 反應,可成功擴核成化合物 [SeRu5(CO)14(CuX)2]2─ (X = Cl, Br),其亦可經由偶合反應繼續擴核成四銅橋接之雙八面體化合物 [Se2Ru10(CO)28Cu4Br2]2─,再者,若將 [Se2Ru10(CO)28Cu4X2]2─ (X = Cl, Br) 以MeCN為溶液於室溫反應,則可轉換成以八面體 Se2Ru4 為主體之化合物 [Se2Ru4(CO)10(CuX)2]2─。此系統亦搭配理論計算針對結構轉換、電化學分析及紫外可見光光譜進行系統化的探討,並進一步與已發表之含碲與釕團簇物比較。

    4. E/Cr/Mn (E = S, Se, Te) 系統之研究
    將硫或硒粉末與鉻及錳金屬羰基化合物於鹼性的甲醇溶液反應,可直接合成出混合金屬團簇物 [E2CrMn2(CO)9]2─ (E = S, Se),而相似的碲化合物 [Te2CrMn2(CO)9]2─ 則藉由環狀化合物 [Te2Mn2Cr2(CO)18]2─ 進行合環反應得到。化合物 [E2CrMn2(CO)9]2─ (E = Se, Te) 可進一步與一氧化碳反應,得到一氧化碳嵌入並伴隨 Cr─Mn 鍵斷裂之四角錐化合物 [E2CrMn2(CO)10]2─,此外化合物 [Te2CrMn2(CO)10]2─ 具有兩個未成對電子,而 [Se2CrMn2(CO)10]2─ 則由光譜推斷其屬逆磁性物種。再者, [Te2CrMn2(CO)10]2─ 可與一氧化碳繼續反應並藉由Mn─Mn鍵斷裂形成錯合物 [Te2CrMn2(CO)11]2─。此系列團簇物之轉換關係、電化學分析及紫外可見光光譜亦藉由理論計算進行系統化的探討與比較。

    1. E/Ru/CO (E = Se, Te) System
    The reaction of K2EO3 (E = Se, Te) with Ru3(CO)12 in KOH/MeOH solutions formed tetrahedral ruthenium chalcogenide clusters [HERu3(CO)9]─. When K2EO3 was treated with Ru3(CO)12 in various ratios in superheated MeOH solutions, a family of octahedral clusters [ERu5(CO)14]2─ and [HSe2Ru4(CO)10]─ as well as novel polynuclear clusters [Te4Ru8(CO)19]2─ and [(H)2Se4Ru6(CO)12]2─ were obtained. Additionally, if the reactions were carried out in refluxing MeOH/MeCN solutions, the unstable tetraruthenium chalcogenide clusters [E2Ru4(CO)10]2─ (E = Se, Te) were formed. The hydrido ERu3-clusters [HERu3(CO)9]─ (E = Se, Te) were found to undergo cluster-expansion reactions to form ERu5-clusters [ERu5(CO)14]2─ upon the addition of Ru3(CO)12 in MeCN, whereas clusters [HERu3(CO)9]─ transformed into E2Ru4-clusters [E2Ru4(CO)10]2─ through coupling reactions by the treatment with KOH in MeOH. If clusters [E2Ru4(CO)10]2─ were further treated with K2EO3 (E = Se, Te), the oxidative condensation or dimerization reaction occurred to give clusters [(H)2Se4Ru6(CO)12]2─ and [Te4Ru8(CO)19]2─, respectively. On the other hand, clusters [E2Ru4(CO)10]2─ could be protonated to form clusters [HE2Ru4(CO)10]─, while the ERu5-clusters [ERu5(CO)14]2─ were converted into clusters [HERu5(CO)14]─ upon the acidification. Furthermore, the nature and cluster transformation of these E─Ru─CO clusters were also elucidated by DFT calculations.

    2. Se/Ru/ROH (R = Me, Et) System
    The selective insertion of CO and CO2 into the C─O and O─H bonds of alcohols by the Se─Ru─CO hydride clusters [(-H)Ru4(CO)10Se2]─ and [(3-H)Ru5(CO)14Se]─ was demonstrated by a cooperative effect of the protonic hydride, the electron-rich Ru atom, and the electronegative Se atom as well as the symmetry of the clusters. These reactions generated the first examples of Se-containing ruthenium carboxylate and alkylcarbonate clusters [{(-H)Ru4(CO)10Se2}2{Ru2(CO)4(-1:1-OOCR)}]3─ (R = Me, Et) and [{(-H)-Ru4(CO)10Se2}2{Ru2(CO)4(-1:1-OOCOR)}]3─ (R = Me, Et), respectively. These results disclosed herein provide a new avenue for the capture and storage of CO and CO2 and useful synthetic routes to novel RCOO─- and ROCOO─-bridged ruthenium selenide clusters.

    3. Se/Ru/CuX (X = Cl, Br, I) System
    A series of mono-CuX-SeRu5 clusters [SeRu5(CO)14CuX]2─ (X = Cl, Br, I), bis-CuX-SeRu5 clusters [SeRu5(CO)14(CuX)2]2─ (X = Cl, Br), 6-Cu4X2-linked di-SeRu5 clusters [Se2Ru10(CO)28Cu4X2]2─ (X = Cl, Br), and bis-CuX-Se2Ru4 clusters [Se2Ru4(CO)10(CuX)2]2─ (X = Cl, Br, I) were obtained from the reactions of the octahedral cluster [SeRu5(CO)14]2─ with various ratios of CuX (X = Cl, Br, I) under appropriate conditions. In addition, mono-CuX-SeRu5 clusters [SeRu5(CO)14CuX]2─ (X = Cl, Br) were found to undergo cluster expansion to form bis-CuX-SeRu5 clusters [SeRu5(CO)14(CuX)2]2─ upon the addition of 1 equiv of CuX (X = Cl, Br). Cluster [SeRu5(CO)14(CuBr)2]2─ can expand further to form the 6-Cu4Br2-linked di-SeRu5-cluster [Se2Ru10(CO)28Cu4Br2]2─ in THF at 0 oC via the coupling reaction. Moreover, clusters [Se2Ru10(CO)28Cu4X2]2─ (X = Cl, Br) were converted into bis-CuX-Se2Ru4 clusters [Se2Ru4(CO)10(CuX)2]2─ in MeCN at room temperature. The stepwise cluster transformation, electrochemistry, and UV/Vis absorption of these CuX-incorporated Se─Ru clusters were explored in terms of the effect of CuX as well as metal cores, and further elucidated by DFT calculations. Furthermore, the comparisons with the previously reported analogous Te─Ru─CuX carbonyl clusters were also involved.

    4. E/Cr/Mn (E = S, Se, Te) System
    The reactions of E powder (E = S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr─Mn─carbonyl clusters, [E2CrMn2(CO)9]2─ (E = S, Se). Clusters [S2CrMn2(CO)9]2─ and [Se2CrMn2(CO)9]2─ were isostructural with one another and each displayed a trigonal-bipyramidal structure, with the CrMn2 triangle axially capped by two 3-E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9]2─, was obtained from the ring-closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18]2─. Upon bubbling with CO, clusters [E2CrMn2(CO)9]2─ (E = Se, Te) were readily converted into square-pyramidal clusters, [E2CrMn2(CO)10]2─ (E = Se, Te), accompanied with the cleavage of one Cr─Mn bond. According to SQUID analysis, cluster [Te2CrMn2(CO)9]2─ was paramagnetic, with S = 1 at room temperature; however, the Se analogue was spectroscopically proposed to be diamagnetic, as verified by TD-DFT calculations. Cluster [Te2CrMn2(CO)9]2─ could be further carbonylated, with cleavage of the Mn─Mn bond to produce a new arachno-cluster, [Te2CrMn2(CO)11]2─. The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations.

    Abstract (Chinese) ………………………………………………………...............….... І Abstract (English) ………………………………………………………...............…..... III Chapter 1 Ruthenium Carbonyl Chalcohenide Clusters: Synthesis, Structural Transformation, Electrochemistry, and UV-Vis Absorption 1 Abstract 1 1.1 Introduction 2 1.2 Results and Discussion 3 1.3 Conclusion 16 1.4 Experimental Section 17 Chapter 2 CO and CO2 Fixation by Se─Ru─CO Hydride Clusters 105 Chapter 3 Ternary Se─Ru─Cu Octahedral Clusters: Synthesis, Transformation, Electrochemistry, and Optical Properties 133 Abstract 133 3.1 Introduction 134 3.2 Results and Discussion 136 3.3 Conclusion 147 3.4 Experimental Section 148 Chapter 4 Trigonal Bipyramidal and Square Pyramidal Chromium─Manganese Chalcogenide Clusters [E2CrMn2(CO)n]2─ (E = S, Se, Te; n = 9, 10): Synthesis, Electrochemistry, UV-vis Absorption, and Computational Studies 237 Appendix A Synthesis of Higher Nuclearity Tellurium─Molybdenum Clusters 341 Appendix B Other Reactions 363 Appendix C Publications 405

    Chapter 1
    (1) (a) Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999. (b) The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; Wiley-VCH: New York, 1990. (c) Clusters and Colloids; Schmid, G., Eds.; Wiley-VCH: Weinheim, 1994.
    (2) (a) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95─204. (b) Compton, N. A.; Errington, R. J.; Norman, N. C. Adv. Organomet. Chem. 1990, 31, 91─182. (c) Kanatzidis, M. G.; Huang, S.-P. Coord. Chem. Rev. 1994, 130, 509─621. (d) Mathur, P. Adv. Organomet. Chem. 1997, 41, 243─315. (e) Whitmire, K. H. Adv. Organomet. Chem. 1998, 42, 1─145. (f) Singh, A. K.; Sharma, S. Coord. Chem. Rev. 2000, 209, 49─98. (g) Mathur, P.; Chatterjee, S.; Torubaev, Y. V. J. Cluster Sci. 2007, 18, 505─534.
    (3) (a) Johnson, B. F. G. Coord. Chem. Rev. 1999, 190─192, 1269─1285. (b) Dyson, P. J. Coord. Chem. Rev. 2004, 248, 2443─2458.
    (4) (a) Rupp, E.; Nowak, F.; Fiechter, S.; Reck, G.; Eyert, V.; Alonso-Vante, N.; Tributsch, H. Eur. J. Inorg. Chem. 2001, 2489─2495. (b) Belletti, D.; Graiff, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A.; Fabrizi de Biani, F.; Zanello, P. Inorg. Chim. Acta 2005, 358, 161─172.
    (5) (a) Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A.; Acc. Chem. Res. 2003, 36, 20─30. (b) Thomas, J. M.; Adams, R. D.; Boswell, E. M.; Captain, B.; Grönbeck, H.; Raja, R. Faraday Discuss. 2008, 138, 301─315.
    (6) (a) Shieh, M.; Ho, C.-H. C. R. Chimie 2005, 8, 1838─1849. (b) Shieh, M. J. Cluster Sci. 1999, 10, 3─36.
    (7) Roof, L. C.; Kolis, J. W. Chem. Rev. 93, 1037─1080.
    (8) Cauzzi, D.; Graiff, C.; Massera, C.; Predieri, G.; Tiripicchio, A. Eur. J. Inorg. Chem. 2001, 721─723.
    (9) Shieh, M; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N.; Coord. Chem. Rev. 2012, 256, 637─694.
    (10) Shieh, M.; Chu, Y.-Y.; Miu, C.-Y.; Wu, P.-F.; Zeng, T.-M. Dalton Trans. 2010, 39, 1492─1503.
    (11) (a) Shieh M.; Jang, L.-F. unpublished results. (b) Shieh M.; Yang, H.-Y. unpublished results.
    (12) (a) Brandl, M.; Brunner, H.; Cattey, H.; Mugnier, Y.; Wachter, J.; Zabel, M. J. Organomet. Chem. 2002, 659, 22─28. (b) Hyder, M. I.; Begum, N.; Sikder, M. D. H.; Hossain, G. M. G.; Hogarth, G.; Kabir, S. E.; Richard, C. J. J. Organomet. Chem. 2009, 694, 304─308.
    (13) Shieh, M.; Chu, Y.-Y.; Jang, L.-F.; Ho, C.-H. Inorg. Chem. 2014, 52, 4284.
    (14) Das, B. K.; Kanatzidis, M. G. Polyhedron 1997, 16, 3061─3066.
    (15) (a) Jackson, P. F.; Johnson, B. G.; Lewis, J. J. Chem. Soc., Chem. Commun. 1980, 224─226. (b) Jackson, P. F.; Johnson, B. G.; Lewis, J. Nelson, W. J. H.; McPartlin, M. J. Chem. Soc., Dalton Trans. 1982, 2100─2107.
    (16) (a) Chihara, T.; Yamazaki, H. J. Cluster Sci. 1992, 3, 489─497. (b) Cabeza, J. A. da Silva, I.; del Río, I.; Martínez-Méndez, L.; Miguel, D.; Riera, V. Angew. Chem., Int. Ed. 2004, 43, 3464─3467. (c) Cabeza, J. A. del Río, I.; García-Álvarez, P.; Miguel, D. Organometallics 2006, 25, 2683─2692.
    (17) Mathur, P.; Thimmappa, B. H. S.; Rheingold, A. L. Inorg. Chem. 1990, 29, 4658─4665.
    (18) (a) Johnson, B. F. G.; Layer, T. M.; Lewis, J.; Raithby, P. R.; Wong, W.-T. Dalton Trans. 1993, 973─980. (b) Baistrocchi, P.; Cauzzi, D.; Lanfranchi, M.; Predieri, G.; Tiripicchio, A.; Camellini, M. T. Inorg. Chim. Acta 1995, 235, 173─183. (c) Baistrocchi, P.; Careri, M.; Cauzzi, D.; Graiff, C.; Lanfranchi, M.; Manini, P.; Predieri, G.; Tiripicchio, A. 1996, 252, 367─374. (d) Slawin, A. M. Z.; Smith, M. B.; Woollins, J. D. J. Chem. Soc., Dalton Trans. 1997, 1877─1881. (e) Cauzzi, D.; Graiff, C.; Predieri, G.; Tiripicchio, A.; Vignali, C. J. Chem. Soc., Dalton Trans. 1999, 237─241. (f) Belletti, D.; Graiff, C.; Giovanni, P.; Tiripicchio, A. Inorg. Chim. Acta 2003, 350, 421─427.
    (19) (a) Huang, S.-P.; Kanatzidis, M. G. J. Am. Chem. Soc. 1992, 114, 5477─5478. (b) Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 1011─1012.
    (20) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664─675.
    (21) Rappoport, D.; Furche, F. J. Chem. Phys., 2010, 133, 134105.
    (22) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735─746.
    (23) (a) Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, 2001; p 291. (b) Nakanishi, T.; Murakami, H.; Sagara, T.; Nakashima, N. J. Phys. Chem. B 1999, 103, 304─308.
    (24) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
    (25) Shieh M.; Hsu, M.-H. unpublished results.
    (26) (a) Zhong, Z.; Postnikova, B. J.; Hanes, R. E.; Lynch, V. M.; Anslyn, E. V. Chem. Eur. J. 2005, 11, 2385─2394. (b) Moore, E. J.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1986, 108, 2257─2263. (c) Cunningham, I. D.; Woolfall, M. J. Org. Chem. 2005, 70, 9248─9256.
    (27) North, A. C. T.; Philips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, A24, 351─359.
    (28) Blessing, R. H. Acta Crystallogr. 1995, A51, 33─38.
    (29) Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen: Germany, 1997.
    (30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.04; Gaussian, Inc.: Wallingford, CT, 2004.
    (31) Becke, A. D. J. Chem. Phys. 1993, 98, 5648─5652.
    (32) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785─789.
    (33) (a) Feng, X.; Gu, J.; Xie, Y.; King, R. B.; Schaefer III, H. F. J. Chem. Theory Comput. 2007, 3, 1580─1587. (b) Zhao, S.; Li, Z.-H.; Wang, W.-N.; Liu, Z.-P.; Fan, K.-N. J. Chem. Phys., 2006, 124, 184102.
    (34) (a) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123─141. (b) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431─1441.
    (35) Wiberg, K. B. Tetrahedron 1968, 24, 1083─1096.
    (36) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066─4073. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899─926.
    (37) Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.

    Chapter 2
    (1) Activation of Small Molecules; Tolman, W. B., Ed.; Wiley-VCH: Weinheim, 2006.
    (2) Carbon Dioxide as Chemical Feedstock; Aresta, M., Ed.; Wiley-VCH: Weinheim, 2010.
    (3) (a) Muetterties, E. L.; Stein, J. Chem. Rev. 1979, 79, 479−490. (b) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259−272. (c) Leitner, W. Coord. Chem. Rev. 1996, 153, 257−284. (d) Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem. Rev. 2001, 101, 953−996. (e) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365−2387. (f) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem. Int. Ed. 2011, 50, 8510−8537.
    (4) Jacobsen, H.; Berke, H. Hydridicty of Transition Metal Hydrides and its Implications for Reactivity. In Recent Advances in Hydride Chemistry; Poli, R., Peruzzini, M., Eds.; Elsevier: Amsterdam, 2001; pp 101−106.
    (5) (a) Jessop, P. G.; Joó, F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248, 2425−2442. (b) Lau, C. P.; Ng, S. M.; Jia, G.; Lin, Z. Coord. Chem. Rev. 2007, 251, 2223−2237. (c) West, N. M.; Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. Coord. Chem. Rev. 2011, 255, 881−898. (d) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013, 113, 6621−6658.
    (6) Pearson, R. G. Chem. Rev. 1985, 85, 41−49.
    (7) von Kutepow, N.; Himmele, W.; Hohenschutz, H. Chem. Ing. Technol. 1965, 37, 383−388.
    (8) (a) Pandey, K. K. Coord. Chem. Rev. 1995, 140, 37−114 and references therein. (b) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27−59 and references therein. (c) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765−10780 and references therein.
    (9) Ishida, T.; Hayasbi, T.; Mizobe, Y.; Hidai, M. Inorg. Chem. 1992, 31, 4481−4485.
    (10) (a) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev., 2009, 38, 100−108. (b) Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Coord. Chem. Rev. 2009, 253, 1476−1494.
    (11) (a) The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; Wiley-VCH: New York, 1990. (b) Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999. (c) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95− 203. (d) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Coord. Chem. Rev. 2012, 256, 637−694.
    (12) (a) Grothausmann, R.; Zehl, G.; Manke, I.; Fiechter, S.; Bogdanoff, P.; Dorbandt, I.; Kupsch, A.; Lange, A.; Hentschel, M. P.; Schumacher, G.; Banhart, J. J. Am. Chem. Soc. 2011, 133, 18161−18171 and references therein. (b) Shih, Z.-Y.; Yang, Z.; Lin, Z.-H.; Chang, H.-T. Int. J. Hydrogen Energy 2011, 36, 7303−7309.
    (13) Chihara, T.; Yamazaki, H. J. Organomet. Chem. 1994, 473, 273−284.
    (14) (a) Crabtree, R. H. The Organometallic Chemistry of The Transition Metals; Wiley: New York, 1988. (b) van Leeuwen, P. W. N. M.; Claver, C. Metal Complexes as Catalysts for Addition of Carbon Monoxide. In Comprehensive Coordination Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier: Oxford, U.K., 2004; Vol. 9, pp 141−206. (c) Haynes, A. Adv. Catal. 2010, 53, 1−45. (d) Thomas, C. M.; Süss-Fink, G. Coord. Chem. Rev. 2003, 243, 125−142.
    (15) (a) Dekleva, T. W.; Forster, D. Adv. Catal. 1986, 34, 81−130. (b) Fahey, D. R. J. Am. Chem. Soc. 1981, 103, 136−141. (c) Martin, J. T.; Baird, M. C. Organometallics 1983, 2, 1073−1078.
    (16) (a) Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2003, 125, 11911−11924. (b) Peter, A.; Vahrenkamp, H. Z. Anorg. Allg. Chem. 2005, 631, 2347−2351.
    (17) (a) Shaikh, A.-A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951−976. (b) Dibenedetto, A.; Aresta, M.; Giannoccaro, P.; Pastore, C.; Pápai, I.; Schubert, G. Eur. J. Inorg. Chem. 2006, 908−913.
    (18) Darensbourg, D. J.; Pala, M.; Waller, J. Organometallics 1983, 3, 1285−1291.
    (19) Orto, P.; Selby, H. D.; Ferris, D.; Maeyer, J. R.; Zheng, Z. Inorg. Chem. 2007, 46, 4377−4379.
    (20) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735−746.
    (21) Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46−76.

    Chapter 3
    (1) (a) The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; Wiley-VCH Publishers: New York, 1990. (b) Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH Publishers: Weinheim, 1999. (c) Nanoparticles: From Theory to Application; Schmid, G., Ed.; Wiley-VCH: Weinheim, Germany, 2004.
    (2) (a) Mathur, P. Adv. Organomet. Chem. 1997, 41, 243─341. (b) Compton, N. A.; Errington, R. J.; Norman, N. C. Adv. Organomet. Chem. 1990, 31, 91─182. (c) Richmond, M. G. Coord. Chem. Rev. 2005, 249, 2763─2786. (d) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Coord. Chem. Rev. 2012, 256, 637─694.
    (3) (a) Dehnen, S.; Melullis, M. Coord. Chem. Rev. 2007, 251, 1259─1280. (b) Adams, R. D.; Miao, S.; Smith, M. D.; Farach, H; Webster, C. E.; Manson, J; Hall, M. B. Inorg. Chem. 2004, 43, 2515─2525.
    (4) (a) Hidai, M.; Kuwata, S.; Mizobe, Y. Acc. Chem. Res. 2000, 33, 46─52. (b) Lee, S. C.; Holm, R. H. Chem. Rev. 2004, 104, 1135─1157. (c) Henderson, R. A. Chem. Rev. 2005, 105, 2365─2437. (d) Thomas, J. M.; Adams, R. D.; Boswell, E. M.; Captain, B.; Grönbeck, H.; Raja, R. Faraday Discuss. 2008, 138, 301─315.
    (5) (a) Hoffmann, R. Angew. Chem. Int. Ed. 2013, 52, 93─103. (b) Tran, D. T. T.; Beltran, L. M. C.; Kowalchuk, C. M.; Trefiak, N. R.; Taylor, N. J.; Corrigan, J. F. Inorg. Chem. 2002, 41, 5693─3698. (c) Zacchini, S. Eur. J. Inorg. Chem. 2011, 4125─4145. (d) Chen, C.-L.; Chen, C.-K.; Chang, S.-C. J. Cluster Sci. 2011, 22, 537─554.
    (6) (a) Deivaraj, T. C.; Park, J.-H.; Afzaal, M.; O’Brien, P.; Vittal, J. J. Chem. Mater. 2003, 15, 2383─2391. (b) DeGroot, M. W.; Rösner, H.; Corrigan, J. F. Chem. Eur. J. 2006, 12, 1547─1554. (c) Afzaal, M.; Malik, M. A.; O'Brien, P. New J. Chem., 2007, 31, 2029─2040.
    (7) Eichhöfer, A.; Olkowska-Oetzel, J.; Fenske, D.; Fink, K.; Mereacre, V.; Powell, A. K.; Buth, G. Inorg. Chem. 2009, 48, 8977─8984.
    (8) (a) Łażewski, J.; Neumann, H.; Parlinski, K. Phys. Rev. B 2004, 70, 195206. (b) Hamdadou, N.; Morsli, M.; Khelil, A.; Bernède, J. C. J. Phys. D: Appl. Phys. 2006, 39, 1042─1049. (c) Zocco, D. A.; Tütün, D. Y.; Hamlin, J. J.; Jeffries, J. R.; Weir, S. T.; Vohra, Y. K.; Maple, M. B. Supercond. Sci. Technol. 2012, 25, 084018.
    (9) Vinokurov, K.; Macdonald, J. E.; Banin, U. Chem. Mater. 2012, 24, 1822─1827.
    (10) (a) Ferrer, M.; Reina, R.; Rossell, O.; Seco, M. Coord. Chem. Rev. 1999, 193─195, 619─642. (b) Bachman, R. E.; Whitmire, K. H.; van Hal, J. Organometallics 1995, 14, 1792─1801.
    (11) (a) Brown, S. S. D.; Hudson, S.; Salter. I. D.; J. Chem. Soc. Dalton Trans. 1987, 1967─1975. (b) Shieh, M.; Hsu, M.-H.; Sheu, W.-S.; Jang, L.-F.; Lin, S.-F.; Chu, Y.-Y.; Miu, C.-Y.; Lai, Y.-W. Liu, H.-L.; Her, J. L. Chem. Eur. J. 2007, 13, 6605─6616. (c) Shieh, M.; Chu, Y.-Y.; Miu, C-Y.; Wu, P.-F.; Zeng, T.-M. Dalton Trans., 2010, 39, 1492─1503.
    (12) (a) Zhou, H.; Day, C. S.; Lachgar, A. Chem. Mater. 2004, 16, 4870─4877. (b) Zhou, H.; Lachgar, A. Cryst. Growth Des. 2006, 6, 2384─2391. (c) Zhang, J.; Lachgar, A. J. Am. Chem. Soc. 2007, 129, 250─251. (d) Zhang, J.-J.; Zhou, H.-J.; Lachgar, A. Angew. Chem. Int. Ed. 2007, 46, 4995─4998.
    (13) (a) Beswick, M. A.; Lewis, J.; Raithby, P. R.; de Arellano, M. C. R. Angew. Chem. Int. Ed. Engl. 1997, 36, 2227─2228. (b) Gregoriades, L. J.; Krauss, H.; Wachter, J.; Virovets, A. V.; Sierka, M.; Scheer, M. Angew. Chem. Int. Ed. 2006, 45, 4189─4192. (c) Wachter, J. Coord. Chem. Rev. 2010, 254, 2078─2085.
    (14) Nakajima, T.; Konomoto, H.; Ogawa, H.; Wakatsuki, Y. J. Organomet. Chem. 2007, 692, 5071─5080.
    (15) Pergola, R. Della.; Sironi, A.; Garlaschelli, L.; Strumolo, D.; Manassero, C.; Manassero, M.; Fedi, S.; Zanello, P.; Kaswalder, F.; Zacchini, S. Inorg. Chim. Acta 2010, 363, 586─594.
    (16) Brown, S. S. D.; Salter, I. D.; Adatia, T.; McPartlin, M. J. Organomet. Chem. 1987, 332, C6─C10.
    (17) Wehman, E.; van Koten, G.; Jastrzebski, J. T. B. H.; Rotteveel, M. A.; Stam, C. H. Organometallics 1988, 7, 1477─1485.
    (18) Beswick, M. A.; Lewis, J.; Raithby, P. R.; de Arellano, M. C. R. J. Chem. Soc. Dalton Trans. 1996, 4033─4034.
    (19) (a) Shieh, M.; Miu, C.-Y.; Lee, C.-J.; Chen, W.-C.; Chu, Y.-Y.; Chen, H.-L. Inorg. Chem. 2008, 47, 11018─11031. (b) Chen, B.-G.; Ho, C.-H.; Lee, C.-J.; Shieh, M. Inorg. Chem. 2009, 48, 10757─10768.
    (20) Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Dalton Trans. 2008, 2832─2838.
    (21) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664─675.
    (22) (a) Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, 2001; p 291. (b) Nakanishi, T.; Murakami, H.; Sagara, T.; Nakashima, N. J. Phys. Chem. B 1999, 103, 304─308.
    (23) (a) Xue, X.; Wang, X.-S.; Xiong, R.-G.; You, X.-Z.; Abrahams, B. F.; Che,C.-M.; Ju, H.-X. Angew. Chem., Int. Ed. 2002, 41, 2944─2946. (b) Scheer, M.; Schindler, A.; Merkle, R.; Johnson, B. P.; Linseis, M.; Winter, R.; Anson, C. E.; Virovets, A. V. J. Am. Chem. Soc. 2007, 129, 13386─13387. (c) Doescher, M. S.; Tour, J. M.; Rawlett, A. M.; Myrick, M. L. J. Phys. Chem. B 2001, 105, 105─110. (d) Hagenström, H.; Schneeweiss, M. A.; Kolb, D. M. Langmuir 1999, 15, 7802─7809.
    (24) Shieh M.; Miu, C.-Y. unpublished results.
    (25) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
    (26) Shieh M.; Jang, L.-F. unpublished results.
    (27) Shieh M.; Lee, C.-F. unpublished results.
    (28) Shieh M.; Hsing, K.-J. unpublished results.
    (29) Shieh M.; Chiu, J.-I. unpublished results.
    (30) Blessing, R. H. Acta Crystallogr. 1995, A51, 33─38.
    (31) Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen: Germany, 1997.
    (32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;Millam, J.M.; Iyengar, S. S.; Tomasi, J.; Barone,V.;Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A.D.; Strain,M.C.; Farkas,O.; Malick,D.K.; Rabuck,A.D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.04; Gaussian, Inc.: Wallingford, CT, 2004.
    (33) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648─5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785─789.
    (34) (a) Feng, X.; Gu, J.; Xie, Y.; King, R. B.; Schaefer, H. F., III. J. Chem. Theory Comput. 2007, 3, 1580─1587. (b) Zhao, S.; Li, Z.-H.; Wang, W.-N.; Liu, Z.-P.; Fan, K.-N. J. Chem. Phys. 2006, 124, 184102.
    (35) (a) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123─141. (b) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431─1441.
    (36) Wiberg, K. B. Tetrahedron 1968, 24, 1083─1096.
    (37) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735─746.
    (38) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066─4073. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899─926.
    (39) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218─8224.
    (40) (a) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995─2001. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669─681.
    (41) (a) O’Boyle, N. M.; Vos, J. G. GaussSum 1.0; Dublin City University: Dublin, Ireland, 2005, available at http://gausssum.sourceforge.net. (b) O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29, 839─845.
    (42) Gorelsky, S. I. AOMix program; http://www.sg-chem.net/.

    Chapter 4
    (1) a) P. Braunstein, J. Rosé in Metal Clusters in Chemistry, Vol. 2 (Eds.: P. Braunstein, L. A. Oro, P. R. Raithby), Wiley-VCH, Weinheim, 1999, Chapter 2.2, pp 616─677; b) The Chemistry of Metal Cluster Complexes (Eds.: D. F. Shriver, H. D. Kaesz, R. D. Adams), Wiley-VCH, New York, 1990; c) R. D. Adams, “Heteronuclear Metal─Metal Bonds” in Comprehensive Organometallic Chemistry II, Vol. 10 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995.
    (2) a) P. Braunstein, J. Rosé, in Catalysis by Di- and Polynuclear Metal Cluster Complexes (Eds.: R. D. Adams, F. A. Cotton), Wiley-VCH, New York, 1998, Chapter 13, pp 443─508; b) Metal Clusters in Catalysis, Studies in Surface Science and Catalysis Series, Vol. 29 (Eds.: B. C. Gates, L. Guczi, H. Knözinger), Elsevier, Amsterdam, 1986; c) S. Hermans, T. Khimyak, R. Raja, G. Sankar, J. M. Thomas, B. F. G. Johnson, in Nanotechnology in Catalysis (Eds.: B. Zhou, S. Hermans, G. A. Somorjai), Kluwer Academic, Plenum Publishers, New York, 2004; d) L. N. Lewis, Chem. Rev. 1993, 93, 2693─2730; e) J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, P. A. Midgley, Acc. Chem. Res. 2003, 36, 20─30; f) A. Sivaramakrishna, H. S. Clayton, B. C. E. Makhubela, J. R. Moss, Coord. Chem. Rev. 2008, 252, 1460─1485; g) R. D. Adams, B. Captain, Acc. Chem. Res. 2009, 42, 409─418.
    (3) a) C. Femoni, M. C. Iapalucci, F. Kaswalder, G. Longoni, S. Zacchini, Coord. Chem. Rev. 2006, 250, 1580─1604; b) A. A. Pasynskii, I. V. Skabitski, Y. V. Torubaev, N. I. Semenova, V. M. Novotortsev, O. G. Ellert, K. A. Lyssenko, J. Organomet. Chem. 2003, 671, 91─100, and references therein; c) R. D. Adams, S. Miao, M. D. Smith, H. Farach, C. E. Webster, J. Manson, M. B. Hall, Inorg. Chem. 2004, 43, 2515─2525; d) R. D. Adams, E. M. Boswell, B. Captain, S. Miao, C. Beddie, C. E. Webster, M. B. Hall, N. S. Dalal, N. Kaur, D. Zipse, J. Organomet. Chem. 2008, 693, 2732─2738; e) S. Muratsugu, K. Sodeyama, F. Kitamura, M. Sugimoto, S. Tsuneyuki, S. Miyashita, T. Kato, H. Nishihara, J. Am. Chem. Soc. 2009, 131, 1388─1389; f) C. Femoni, M. C. Iapalucci, G. Longoni, J. Wolowska, S. Zacchini, P. Zanello, S. Fedi, M. Riccò, D. Pontiroli, M. Mazzani, J. Am. Chem. Soc. 2010, 132, 2919─2927 and, references therein.
    (4) a) X.-J. Kong, L.-S. Long, Z. Zheng, R.-B. Huang, L.-S. Zheng, Acc. Chem. Res. 2010, 43, 201─209; b) S. Zacchini, Eur. J. Inorg. Chem. 2011, 4125─4145; c) E. G. Mednikov, M. C. Jewell, L. F. Dahl, J. Am. Chem. Soc. 2007, 129, 11619─11630; d) A. C. Colson, K. H. Whitmire, Chem. Mater. 2011, 23, 3731─3739.
    (5) a) L. C. Roof, J. W. Kolis, Chem. Rev. 1993, 93, 1037─1080; b) P. Mathur, Adv. Organomet. Chem. 1997, 41, 243─315; c) K. H. Whitmire, Adv. Organomet. Chem. 1998, 42, 1─145.
    (6) a) M. G. Kanatzidis, Huang, S.-P. Coord. Chem. Rev. 1994, 130, 509─621; b) M. Y. Darensbourg, E. J. Lyon, J. J. Smee, Coord. Chem. Rev. 2000, 206─207, 533─561; c) N. A. Pushkarevsky, S. N. Konchenko, M. Scheer, J. Cluster Sci. 2007, 18, 606─617.
    (7) M. Shieh, C.-Y. Miu, Y.-Y. Chu, C.-N. Lin, Coord. Chem. Rev. 2012, 256, 637─694.
    (8) a) W. A. Herrmann, Angew. Chem. 1986, 98, 57─77; Angew. Chem. Int. Ed. 1986, 25, 56─76; b) G. Huttner, S. Schuler, L. Zsolnai, M. Gottlieb, H. Braunwarth, M. Minelli, J. Organomet. Chem. 1986, 299, C4─C6; c) J. W. Kolis, Coord. Chem. Rev. 1990, 105, 195─219; d) Z.-G. Fang, T. S. A. Hor, K. F. Mok, S.-C. Ng, L.-K. Liu, Y.-S. Wen, Organometallics 1993, 12, 1009─1011; e) R. Seidel, B. Schnautz, G. Henkel, Angew. Chem. 1996, 108, 1836─1839; Angew. Chem. Int. Ed. 1996, 35, 1710─1712; f) Z. Weng, L. Y. Goh, Acc. Chem. Res. 2004, 37, 187─199; g) R. D. Adams, O.-S. Kwon, S. Miao, Acc. Chem. Res. 2005, 38, 183─190; h) P. Mathur, S. Chatterjee, Y. V. Torubaev, J. Cluster Sci. 2007, 18, 505─534.
    (9) a) M. Shieh, L.-F. Ho, L.-F. Jang, C.-H. Ueng, S.-M. Peng, Y.-H. Liu, Chem. Commun. 2001, 1014─1015; b) M. Shieh, R.-L. Chung, C.-H. Yu, M.-H. Hsu, C.-H. Ho, S.-M. Peng, Y.-H. Liu, Inorg. Chem. 2003, 42, 5477─5479; c) M. Shieh, L.-F. Ho, Y.-W. Guo, S.-F. Lin, Y.-C. Lin, S.-M. Peng, Y.-H. Liu, Organometallics 2003, 22, 5020─5026; d) M. Shieh, S.-F. Lin, Y.-W. Guo, M.-H. Hsu, Y.-W. Lai, Organometallics 2004, 23, 5182─5187; e) M.-H. Hsu, C.-Y. Miu, Y.-C. Lin, M. Shieh, J. Organomet. Chem. 2006, 691, 966─974.
    (10) a) M. Shieh, M.-H. Hsu, J. Cluster Sci. 2004, 15, 91─106; b) K.-C. Huang, Y.-C. Tsai, G.-H. Lee, S.-M. Peng, M. Shieh, Inorg. Chem. 1997, 36, 4421─4425; c) M. Shieh, C.-H. Ho, W.-S. Sheu, H.-W. Chen, J. Am. Chem. Soc. 2010, 132, 4032─4033; d) C.-H. Ho, Y.-Y. Chu, C.-N. Lin, H.-W. Chen, C.-Y. Huang, M. Shieh, Organometallics 2010, 29, 4396─4405; e) M. Shieh, H.-S. Chen, H.-Y. Yang, S.-F. Lin, C.-H. Ueng, Chem.─Eur. J. 2001, 7, 3152─3158; f) M. Shieh, H.-S. Chen, H.-Y. Yang, C.-H. Ueng, Angew. Chem. 1999, 111, 1339─1341; Angew. Chem. Int. Ed. 1999, 38, 1252─1254.
    (11) a) M. Shieh, C.-N. Lin, C.-Y. Miu, M.-H. Hsu, Y.-W. Pan, L.-F. Ho, Inorg. Chem. 2010, 49, 8056─8066; b) M. Shieh, C.-Y. Miu, K.-C. Huang, C.-F. Lee, B.-G. Chen, Inorg. Chem. 2011, 50, 7735─7748.
    (12) a) C. Mealli, A. Messaoudi, A. Ienco, Theor. Chem. Acc. 2009, 123, 365─373; b) M. N. Sokolov, P. A. Abramov, Coord. Chem. Rev. 2012, 256, 1972─1991; c) D. Galli, L. Garlaschelli, G. Ciani, A. Fumagalli, S. Martinengo, A. Sironi, Dalton Trans. 1984, 55─61; d) R. Della Pergola, L. Garlaschelli, S. Martinengo, F. Demartin, M. Manassero, M. Sansoni, Dalton Trans. 1986, 2463─2468.
    (13) a) A. A. Pasynskii, I. L. Eremenko, B. Orazsakhatov, V. T. Kalinnikov, G. G. Aleksandrov, Y. T. Struchkov, J. Organomet. Chem. 1981, 216, 211─221; b) A. A. Pasynskii, V. N. Grigoriev, Y. V. Torubaev, A. I. Blokhin, S. S. Shapovalov, Z. V. Dobrokhotova, V. M. Novotortsev, Russ. Chem. Bull. 2003, 52, 2689─2700; c) A. A. Pasynskii, Y. V. Torubaev, V. N. Grigor’ev, A. I. Blokhin, M. Herberhold, P. Mathur, J. Cluster Sci. 2009, 20, 193─204.
    (14) B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832─2838.
    (15) a) K.-F. Hsu, D.-Y. Chung, S. Lal, A. Mrotzek, T. Kyratsi, T. Hogan, M. G. Kanatzidis, J. Am. Chem. Soc. 2002, 124, 2410─2411; b) E. Quarez, K.-F. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis, M. G. Kanatzidis, J. Am. Chem. Soc. 2005, 127, 9177─9190; c) B. P. T. Fokwa, R. Dronskowski, Z. Anorg. Allg. Chem. 2005, 631, 2478─2480; d) B. P. T. Fokwa, R. Dronskowski, J. Alloy Compd. 2007, 428, 84─89; (e) N. Belfguira, S. Walha, A. Kabadou, A. B. Salah, F. Hatert, A. M. Fransolet, J. Chem. Crystallogr. 2011, 41, 370─374.
    (16) Cambridge Structural Database System, (CSD), Cambridge Crystallographic Data Centre: Cambridge, U.K, 2011; http://www.ccdc.cam.ac.uk.
    (17) R. Sarangi, L. Yang, S. G. Winikoff, L. Gagliardi, C. J. Cramer, W. B. Tolman, E. I. Solomon, J. Am. Chem. Soc. 2011, 133, 17180─17191.
    (18) a) K. H. Whitmire, K. S. Raghuveer, M. R. Churchill, J. C. Fettinger, R. F. See, J. Am. Chem. Soc. 1986, 108, 2778─2780; b) K. H. Whitmire, M. Shieh, C. B. Lagrone, B. H. Robinson, M. R. Churchill, J. C. Fettinger, R. F. See, Inorg. Chem. 1987, 26, 2798─2807; c) J. R. Lockemeyer, T. B. Rauchfuss, A. L. Rheingold, J. Am. Chem. Soc. 1989, 111, 5733─5738; d) C. R. Pulliam, J. B. Thoden, A. M. Stacy, B. Spencer, M. H. Englert, L. F. Dahl, J. Am. Chem. Soc. 1991, 113, 7398─7410; e) A. Venturelli, T. B. Rauchfuss, J. Am. Chem. Soc. 1994, 116, 4824─4831; f) S. Dehnen, C. Zimmermann, Chem.─Eur. J. 2000, 6, 2256─2261.
    (19) a) D. A. Lesch, T. B. Rauchfuss, Organometallics 1982, 1, 499─506; b) G. Gervasio, J. Organomet. Chem. 1992, 441, 271─276; c) L. C. Roof, D. M. Smith, G. W. Drake, W. T. Pennington, J. W. Kolis, Inorg. Chem. 1995, 34, 337─345; d) M. Shieh, T.-F. Tang, S.-M. Peng, G.-H. Lee, Inorg. Chem. 1995, 34, 2797─2803.
    (20) a) T. Beringhelli, G. Ciani, G. D′Alfonso, H. Molinari, A. Sironi, Inorg. Chem. 1985, 24, 2666─2671; b) M. Bergamo, T. Beringhelli, G. D′Alfonso, G. Ciani, M. Moret, A. Sironi, Organometallics 1996, 15, 3876─3884; c) W. Bernhardt, H. Vahrenkamp, Organometallics 1986, 5, 2388─2389; d) R. D. Adams, B. Captain, W. Fu, Organometallics 2000, 19, 3670─3673; e) R. Psaro, C. Dossi, R. Ugo, J. Mol. Catal. 1983, 21, 331─351; f) C. Femoni, M. C. Iapalucci, G. Longoni, C. Tiozzo, S. Zacchini, B. T. Heaton, J. A. Iggo, P. Zanello, S. Fedi, M. V. Garland, C. Li, Dalton Trans. 2009, 2217─2223.
    (21) E. C. Brown, J. T. York, W. E. Antholine, E. Ruiz, S. Alvarez, W. B. Tolman, J. Am. Chem. Soc. 2005, 127, 13752─13753.
    (22) a) O. Cador, H. Cattey, J.-F. Halet, W. Meier, Y. Mugnier, J. Wachter, J.-Y. Saillard, B. Zouchoune, M. Zabel, Inorg. Chem. 2007, 46, 501─509; b) M. Bencharif, O. Cador, H. Cattey, A. Ebner, J.-F. Halet, S. Kahlal, W. Meier, Y. Mugnier, J.-Y. Saillard, P. Schwarz, F. Z. Trodi, J. Wachter, M. Zabel, Eur. J. Inorg. Chem. 2008, 1959─1968.
    (23) A. Lupan, R. B. King, Inorg. Chem. 2011, 50, 9571─9577.
    (24) S. Zilberman, E. I. Stiefel, M. H. Cohen, R. Car, J. Phy. Chem. B 2006, 110, 7049─7057.
    (25) Z. Lin, Acc. Chem. Res. 2010, 43, 602─611.
    (26) a) A. J. Bard, L. R. Faulkner, Electrochemical Methods; Fundamentals and Applications, 2nd ed., John Wiley & Sons, New York, 2001, pp 291; b) T. Nakanishi, H. Murakami, T. Sagara, N. Nakashima, J. Phy. Chem. B 1999, 103, 304─308.
    (27) Y.-l. Lin, Y.-m. Lee, C. Lim, J. Am. Chem. Soc. 2005, 127, 11336─11347.
    (28) a) D. Jacquemin, E. A. Perpète, I. Ciofini, C. Adamo, J. Chem. Theory Comput. 2010, 6, 1532─1537; b) D. J. Tozer, N. C. Handy, Phys. Chem. Chem. Phys. 2000, 2, 2117─2121.
    (29) D. F. Shriver, M. A. Drezdon, The Manipulation of Air-Sensitive Compounds, Wiley-VCH Publishers, New York, 1986.
    (30) G. J. Kubas, Inorg. Synth. 1979, 19, 90─92.

    無法下載圖示 本全文未授權公開
    QR CODE