簡易檢索 / 詳目顯示

研究生: 廖攸雅
You-Ya Liao
論文名稱: 以Phenothiazine為中心之雙錨基光敏染料與染敏太陽能電池
Phenothiazine-based sensitizers containing two anchors for dye-sensitized solar cells
指導教授: 林建村
Lin, Jiann-T'Suen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 染料敏化太陽能電池雙錨式吩噻嗪
英文關鍵詞: dye-sensitized solar cells, two anchors, phenothiazine
論文種類: 學術論文
相關次數: 點閱:162下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文研究中, 我們藉由Suzuki 偶合反應、Stille 偶合反應、Vilsmeier-Haack 醛化反應以及Knoevenagel 縮合反應等化學方法,合成一系列以硫二苯胺(phenothiazine)為電子予體並經由不同結構的共軛架橋連接兩個電子受體形成HL 系列之雙錨式光敏染料,並應用於染料敏化太陽能電池。
    藉由循環伏安法(cyclic voltammetry)、差式脈衝伏安法(differential pulse
    voltammetry)以及可見-紫外光光譜儀(UV-Vis absorption spectra),我們發現相較於單錨式光敏染料,雙錨式光敏染料有更好的光收成。這些化合物也可成功製成染料敏化太陽能電池,在光照下染料分子可以順利注入電子於TiO2,以及接受電解質之電子而再生。我們也對這些分子進行理論計算之探討,並發現化合物吸光後應有良好之電荷轉移。
    透過元件測試發現,雙錨式光敏染料比單錨式光敏染料確實擁有更有效的電子注入路徑,以及較佳的光收成能力。雙錨式光敏染料在共軛架橋中引入烷基鏈可有效減少染料間的堆疊並抑制暗電流,除此之外在硫二苯胺單元氮原子的位子引入2,6-bis(hexyloxy)phen-1-yl (BP-C6)基團,更將吸光範圍大幅的紅位移,同時強化抑制染料間的堆疊現象,以及降低產生暗電流的機會,引入增加支鏈的2,6-bis(ethylhexyloxy)phen-1-yl (BP-C8)基團,更強化染料抑制暗電流的能力。此HL 系列染料中,最好的光電轉換效率高達8.32%,已超越N719 (7.35%)建構之標準元件。

    A series of new push–pull phenothiazine-based dyes (HL) featuring various π spacers (thiophene,3-hexylthiophene, 4-hexyl-2,2’-bithiophene, 4-hexylthiazole) and double acceptors/anchors have been synthesized via Suzuki coupling, Stille coupling, Vilsmeier-Haack formylation, and Knoevenagel condensation reactions. These dyes were used as sensitizers for dye-sensitized solar cells (DSSCs).
    Cyclic voltammetry, differential pulse voltammetry and UV-Vis absorption spectra were used to estimate the HOMO and LUMO energy levels and its light harvest ability of the sensitizers in solution. Theoretical computations were also carried out on these dye molecules.
    The dyes with two anchors have more efficient interfacial charge generation and transport, as well as better light harvesting capacity compared with their congeners with only single anchor. Incorporation of hexyl chains into the π-conjugated spacer of these double-anchoring dyes can efficiently suppress dye aggregation and reduce charge recombination. Furthermore the 2,6-bis(hexyloxy)phen-1-yl substituent at the nitrogen atom of the phenothiazine entity not only led to more red shift of the absorption spectra, but also better suppressed the π-π stacking of the molecules and the dark current. Among them, the best conversion efficiency reaches 8.32%, which exceeds the N719-based (7.35%) DSSCs fabricated and measured under the similar conditions.

    目錄 摘要------------------------------------------------------------------------------------------------I Abstract -------------------------------------------------------------------------------------------II 目錄----------------------------------------------------------------------------------------------III 圖目錄--------------------------------------------------------------------------------------------V 表目錄-----------------------------------------------------------------------------------------VIII 附圖目錄----------------------------------------------------------------------------------------Ⅸ 第一章、緒論與研究動機----------------------------------------------------------------------1 1−1、前言--------------------------------------------------------------------------------------1 1−2、太陽光譜介紹--------------------------------------------------------------------------1  1−3、太陽能電池簡介-----------------------------------------------------------------------3   1−3−1、矽晶類太陽能電池---------------------------------------------------------------4   1−3−2、化合物型太陽能電池-----------------------------------------------------------4   1−3−2、有機太陽能電池------------------------------------------------------------------5      (1) 有機光伏打電池(Organic Photovoltaic Cells,OPVs)-----------------5      (2) 染料敏化太陽能電池(Dye-Sensitized Solar Cells,DSSCs)---------5  1−4、有機染料敏化太陽能電池之各部元件組成---------------------------------------7 1−4−1、透明導電玻璃-------------------------------------------------------------------8 1−4−2、多孔性奈米級二氧化鈦光導薄膜電極-------------------------------------8 1−4−3、有機染料-------------------------------------------------------------------------9 1−4−4、電解質溶液---------------------------------------------------------------------10 1−4−5、對向電極------------------------------------------------------------------------10 1−5、染料敏化太陽能電池機制與原理-------------------------------------------------11 1−6、太陽能電池參數介紹----------------------------------------------------------------13 1−7、研究動機-------------------------------------------------------------------------------15 第二章、實驗方法與過程說明--------------------------------------------------------------25  2–1、實驗儀器-------------------------------------------------------------------------------25  2–2、實驗藥品及溶劑----------------------------------------------------------------------27  2–3、合成步驟及代號----------------------------------------------------------------------28  2−4、太陽能電池元件製作----------------------------------------------------------------61 第三章、結果與討論--------------------------------------------------------------------------62  3–1、實驗合成方法與反應機構之探討-------------------------------------------------62 3–1–1、本研究論文之反應機構探討------------------------------------------------65  3–2、有機染料之物性探討----------------------------------------------------------------68    3–2–1、光物理性質之探討------------------------------------------------------------68 3–2–2、TiO2薄膜上的吸收光譜------------------------------------------------------70    3–2–3、電化學性質之探討------------------------------------------------------------72  3–3、HL1-HL4染敏元件效率之探討----------------------------------------------------74 3–3–1、染料HL1-HL4元件效率表現探討-----------------------------------------75 3–3–2、染料HL1-HL4染敏元件EIS性質探討------------------------------------77 3–3–3、染料HL1-HL4染敏元件之electron lifetime與charge extraction------79 3–3–4、染料HL1-HL4理論計算之探討--------------------------------------------81 3–4、HL5-HL8染敏元件效率之探討----------------------------------------------------86 3–4–1、染料HL5-HL8元件效率表現探討-----------------------------------------86 3–4–2、染料HL5-HL8染敏元件EIS性質探討------------------------------------89 3–4–3、染料HL5-HL8染敏元件之electron lifetime與charge extraction------91 3–4–4、染料HL5-HL8理論計算之探討--------------------------------------------92  3–5、結論-------------------------------------------------------------------------------------97 參考文獻----------------------------------------------------------------------------------------98 附圖---------------------------------------------------------------------------------------------102

    參考文獻
    1. Kallmans, H.; Pope, M. J. Chem. Phys. 1958, 30, 585.
    2. Green, M. A. in “Proceeding of the 21st IEEE Photovoltaic Specialists Conference.” Orlando, USA: IEEE Publication, 1990.
    3. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys.1954, 25, 676.
    4. 馮垛生, “太陽能發電原理與應用” 五南圖書出版股份有限公司. 2009.
    5. 郭明村, “薄膜太陽能電池發展近況” 工業材料雜誌. 2003, 203, 138.
    6. Hurd, F.; Livingston, R. J. Phys. Chem. 1940, 44, 865.
    7. 萬海保, 曹立新, 王麗穎, 曾廣賦, 席時權, “染料敏化的TiO2奈米晶多孔膜的性質及光電轉移”化學通報. 1999, 6.
    8. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402.
    9. Regan, B. O.; Grätzel, M. Nature 1991, 353, 737.
    10. (a) Nazeeruddin, M. K.; Kay, A.; Rodicio, L.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.; (b) Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.; (c) Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphrey-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
    11. Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano, 2009, 3, 3103.
    12. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
    13. Mathew, S.; Yella, A.; Gao, P.; Humphrey-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeerruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242.
    14. (a) Hara, K.; Miyamoto, K.; Abe, Y.; Yanagida, M. J. Phys. Chem. B 2005, 109, 23776.; (b) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.; (c) Ma, X.; Hua, J.; Jin, Y.; Meng, F.; Zhan, W.; Tian, H. Tetrahedron 2008, 64, 345.; (d) Tan, S.; Zhai, J.; Fang, H.; Jiu, T.; Ge, J.; Li, Y.; Jiang, L.; Zhu, D. Chem. Eur. J. 2005, 11, 6272.; (e) Chen, R.; Yang, X.; Tian, H.; Sun, L. J. Photochem. Photobiol. A 2007, 189, 295.
    15. (a) Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J. E.; Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 6850.; (b) Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M. J. Am. Chem. Soc. 2003, 125, 1166.
    16. Durrant, J. R.; Haque, S. A. Nat, Mater. 2003, 2, 362.
    17. Ferber, J.; Stangl, R.; Luther, J. Sol. Energy Mater. Sol. Cells 1998, 53, 29.
    18. Zhang, M.; Wang, Y.; Xu, M.; Ma, W.; Li, R.; Wang, P. Energy Environ. Sci.2013, 6, 2944.
    19. Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.; Park, C.; Lee, M. H.; Lee, W.; Park, J.; Kim, K.; Park, N. G.; Kim, C. Chem. Commun. 2007, 4887.
    20. Thomas, K. R. J.; Lin, J. T.; Hsu, Y. C.; Ho, K. C. Chem. Commun.2005, 4098.
    21. Hua, Y.; Chang, S.; Huang, D.; Zhou, X.; Zhu, X.; Zhao, J.; Chen, T.; Wong, W. Y.; Wong, W. K. Chem. Mater. 2013, 25, 2146.
    22. Yen, Y. S.; Lin, T. Y.; Hsu, C. Y.; Chen, Y. C.; Chou, H. H.; Tsai, C.; Lin, J. T. Org. Electron. 2013, 14, 2546.
    23. (a) Wang, Z. S.; Koumura, N.; Cui, Y.; Takahashi, M.; Sekignchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K. Chem. Mater. 2008, 20, 3993.; (b) Ting, H. C.; Tsai, C. H.; Chen, J. H.; Lin, L. Y.; Chou, S. H.; Wong, K.T.; Huang, T. W.; Wu, C. C. Org. Lett. 2012, 14, 6338.
    24. Wu, Y.; Zhang, X.; Li, W.; Wang, Z. S.; Tian, H.; Zhu, W. Adv. Energy Mater. 2012, 2, 149.
    25. Abbotto, A.; Manfredi, N.; Marinzi, C.; De Angelis, F.; Mosconi, E.; Yum, J. H.; Xianxi, Z.; Nazeeruddin, M. K.; Grätzel, M. Energy. Environ. Sci.2009, 2, 1094.
    26. (a) Shang, H.; Luo, Y.; Guo, X.; Huang, X.; Zhan, X.; Jiang, K.; Meng, Q. Dyes Pigm. 2010, 87, 249.; (b) Lee, J. K.; Lee, S. M.; Lee, S. B.; Kim, K. H.; Cho, S. E.; Jang, S. I.; Park, S. H.; Hwang, W. P.; Seo, M. H.; Kim, M. R. Current Appl. Phys. 2011, 11, 140.; (c) Lin, Y. Y.; Wu, F. L.; Chang, C. H.; Chou, H. H.; Chuang, T. M.; Chu, T. C.; Hsu, C. Y.; Chen, P. W.; Ho, K. C.; Lo, Y. H.; Lin, J. T. J. Mater. Chem. A, 2014, 2, 3092.
    27. (a) Grisorio, R.; De Marco, L.; Allegretta, G.; Giannuzzi, R.; Suranna, G. P.; Manca, M.; Mastrorilli, P.; Gigli, G. Dyes Pigm. 2013, 98, 221.; (b) Ramkumar, S.; Anandan, S. Dyes Pigm. 2013, 97, 397.
    28. (a) Park, S. S.; Won, Y. S.; Choi, Y. C. and Kim, J. H. Energy & Fuels 2009, 23, 3732 ; (b) Jo, H. J.; Nam, J. E.; Kim, D. H.; Kim, H.; Kang, J. K.Dyes Pigm. 2014, 102, 285.
    29. (a) Ting, H. C.; Tsai, C. H.; Chen, J. H.; Lin, L. Y.; Chou, S. H.; Wong, K. T.; Huang, T. W.; Wu, C. C. Org. Lett.2012, 14, 6338.; (b)Lu, X.; Jia, X.; Wang, Z. S.; Zhou, G. J. Mater. Chem. A, 2013, 1, 9697.
    30. Ishiwata, Y.; Togo, H. Synlett. 2008, 17, 2637.
    31. Thomsen, I.; Torssell, K. B. G. Acta Chemica Scandinavica 1991, 45, 539.
    32. Maeda, C.; Masuda, M.; Yoshioka, N. Org. Lett. 2013, 15, 3566.
    33. Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc.1985, 107, 972.
    34. Milstein, D.; Stille, J. K. J. Am. Chem. Soc.1978, 100, 3636.
    35. Meth-Cohn, O; Stanforth, S. P. Comp. Org. Syn.1991, 2, 777.
    36. Knoevenagel, E. Ber. Dtsch. Chem. Ges.1898, 31, 2596.
    37. Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc.1994, 116, 5969.
    38. Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc.2005, 127, 16835.

    下載圖示
    QR CODE