簡易檢索 / 詳目顯示

研究生: 陳冠文
論文名稱: 水熱法成長氧化鋅奈米線陣列應用於染料敏化太陽能電池
Application of ZnO nanowire array on the electrode of dye-sensitized solar cell by hydrothermal method
指導教授: 程金保
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 99
中文關鍵詞: 氧化鋅水熱法摻雜鋁染料敏化太陽能電池
英文關鍵詞: ZnO, hydrothermal method, doped Al, DSSC
論文種類: 學術論文
相關次數: 點閱:281下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用溶膠凝膠法(sol gel method)製備氧化鋅薄膜,作為成長氧化鋅奈米線陣列基底,經退火處理後,可得到高結晶的微小表面顆粒種子層;水熱法(Hydrothermal method)的水溶液環境中利用氧化鋅特有極性表面特性,在同質氧化鋅種子層上成長奈米線陣列,控制反應水溶液濃度以及成長時間,製備出高準直性的奈米線陣列,得到最佳的電極長度與長寬比(L=2300 nm, L/D=46)。在水熱環境中摻雜2 at.%鋁使氧化鋅奈米線增強結晶性,使長寬比由46增加至60.5,改善電極表面形貌,鋁離子的嵌入亦能增強電子傳導性與材料表面極性,使奈米線電極對染料吸附能力增加、抑止ZnO2+/dye錯合物的產生。以更換反應水溶液方式持續成長摻雜鋁奈米線增加體表面積,接續成長方式使電極長度由2.3 m增加至6.6 m,而效率則由0.152%提升至0.834%。摻雜2 at.%鋁氧化鋅奈米線電極,在相似長度下(約6.5 m),改善電池效率由純氧化鋅奈米線陣列的0.492%提升至0.834%。

    n this study, the use of sol-gel method preparation of ZnO thin film, as the growth of zinc oxide nanowire array substrate, after annealing, will be high crystallinity of the small surface particles seed layer. Hydrothermal method in the aqueous environment specific to the use of zinc oxide polar surface properties, in the same seed layer of zinc oxide nanowire array growth, control reaction in aqueous solution concentration, as well as the growth time, the preparation of high collimation of the nanowire arrays. The most good length and aspect ratio of the electrode (L = 2300 nm, L / D = 46). Hydrothermal environments in the doping 2 at.% Aluminum zinc oxide nanowire crystalline enhanced, so that aspect ratio increased to 60.5 from 46, to improve the electrode surface morphology, aluminum ion can embed and enhance the electronic conductivity of materials surface polarity, so that nanowire electrode to increase the adsorption capacity of dye, the stifling of the ZnO2+ / dye complexes generated wrong. Way to replace the reaction of aqueous solution growth of aluminum-doped nanowire increased body surface area, continued growth means the length of electrode from 2.3 m to 6.6 m, and the efficiency of up to 0.152 percent from 0.834 percent. Doped 2 at.% Aluminum zinc oxide nanowire electrode, similar in length in the next (about 6.5 m), to improve the efficiency of the battery from pure zinc oxide nanowire arrays of 0.492% to 0.834%.

    第一章 序論 11 前言………………………………………………………………….1 12太陽能電池………………………………………………..…………2 13研究動機與目的……………………………………………..………5 第二章 理論與文獻回顧 21 氧化鋅材料……………………………………………….…………6 211氧化鋅材料特性…………………………………….………….6 212鋁摻雜氧化鋅特性……………………………………………..8 22染料敏化太陽能電池……………………………………….……….9 221染料敏化太陽能電池材料……………………………………..9 222 N3染料分子材料…………………………………..…………..9 223 N3染料分子結構與功能…………………………….………..11 224 染料敏化太陽能電池工作原理………...…………………….13 23 太陽能電池光電轉換效率分析………………………..…………..17 231太陽光譜照度與空氣質量…………………………………….17 232太陽能電池光電轉換效率計算……………………….………18 24 氧化鋅奈米線應用於染料敏化太陽能電池研究…………………20 241氧化鋅材料應用於染料敏化太陽能電池研究……………….20 242 奈米線電極結構特性………………………………………….20 243 氧化鋅奈米結構製備技術…………………………………….21 25 水熱法製備氧化鋅奈米材料………………………………………..23 251 種子層對水熱法製備奈米結構影響....………………………..23 252 溶膠凝膠法……………………………………….…………….23 253旋轉塗佈法……………………………………….…………….26 254 熱處理…………………………………………………………..26 255 水熱法成長氧化鋅奈米結構……………….………………….27 256 水熱法成長氧化鋅奈米結構應用於染料敏化太陽能電池…..31 第三章 實驗方法與步驟 31 實驗藥品與耗材………………………………..……………………32 32 實驗流程規劃……………………………………..…………………33 321 基板清洗………………………………………..………………34 322 氧化鋅種子層製備………………………………..……………35 323 水熱法製備一維氧化鋅奈米線陣列…………………………..37 324 電解質調製………………………………………………..……38 325染料調製與使用…………………………………..…………….38 326 元件封裝………………………………………….…………….39 33 材料性質分析………………………………………………………..40 331 掃描式電子顯微鏡(Scanning electron microscope, SEM)…....40 332 X光繞射分析儀(Xray diffraction, XRD)……………………..40 333 X光光電子能譜儀(Xray photoelectron spectroscopy, XPS)…40 334 電壓電流量測(IV measurment)……………………..………..41 335 顯微拉曼光譜儀(MircoRaman spectroscopy)………………..41 336 太陽能電池效率分析…………………………………..………42 41 以溶膠凝膠法製備氧化鋅種子層……………………………..……42 411 不同轉速製備氧化鋅種子層表面形貌……………….……….42 412 不同退火溫度熱處理氧化鋅種子層…………………………..44 42 水熱法製備氧化鋅奈米線陣列結果與特性分析…….…………….45 421 反應物濃度對氧化鋅奈米線陣列形貌影響…………………..45 422 反應物濃度比對氧化鋅奈米線陣列形貌影響…………….….47 423 成長時間對氧化鋅奈米線陣列形貌影響…………………..…48 424 製程時間對氧化鋅奈米線陣列形貌影響……………….…….50 43 鋁摻雜氧化鋅奈米線陣列結果與特性分析………………………52 431 摻雜鋁氧化鋅奈米線陣列形貌與結構分析…………………52 432 摻雜鋁氧化鋅奈米線陣列元素含量分析……………………56 433 雜鋁氧化鋅奈米線陣列成分分析……………………………57 434 摻雜鋁氧化鋅奈米線光電特性分析……………............……60 44 染料對摻雜鋁氧化鋅電極吸附狀態分析…………….........…..…..61 441 N3染料吸附之拉曼光譜分析……………….........……….…..61 442 染料吸附時間對摻雜鋁氧化鋅奈米線形貌影響……........….61 443 染料吸附摻雜鋁氧化鋅奈米線效率分析…….........................68 444 染料吸附不同長度摻雜鋁氧化鋅奈米線效率分析…….....…72 第五章 結論與展望 51 結論………………………….......................................................…..75 52 未來展望………………………………….................................……76 參考文獻…………………………………………………………………………77

    [1] German Advisory Council on Global Change, “World in transition: turning energy systems towards sustainability” (2003).
    [2] 張品全, “科學發展”, 349期 (2002) 2229.
    [3] http://solarpv.itri.org.tw
    [4] http://www.globalwarmingart.com/
    [5] http://www.electrosolar.co.uk
    [6] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables”, Progress in Photovoltaics: Research and Applications, 16 (2008) 435440.
    [7] M. S. Akhtar, M. A. Khan, M. S. Jeon, and O. B. Yang, “Controlled synthesis of various ZnO nanostructured materials by capping agentsassisted hydrothermal method for dye-sensitized solar cells”, Electrochimica Acta, 53 (2008) 78697874.
    [8] J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Z. Lan, and P. Li, “Crystal morphology of anatase titania nanocrystals used in dye-sensitized solar cells”, Crystal Growth  Design, 8 (1) (2008) 247252.
    [9] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dyesensitized ZnO nanorod solar cells”, The Journal of Physical Chemistry B, 110 (2006) 1615916161.
    [10] A. V. Singh, R. M. Mehra, A. Yoshida, and A. Wakahara, “Doping mechanism in aluminum doped zinc oxide films”, Journal of Applied Physics, 95 (2004) 36403643.
    [11] T. Oekermann, T. Yoshida, C. Boeckler, J. Caro, and H. Minoura, “Capacitance and fielddriven electron transport in electrochemically selfassembled nanoporous ZnO/dye hybrid films”, Journal of Physical Chemsitry B, 109 (2005) 12560-12566.

    [12] K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, “Studied of the adsorption process of Ru complexes in nanoporous ZnO electrodes”, Langmuir, 16 (2000) 46884694.
    [13] Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology”, Materials Science and Engineering R, 64 (2009) 33–71.
    [14] R. Wang, L. H. King, and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, Journal of Materials Research, 11 (1996) 16591664.
    [15] S. Krishnamoorthy and A. A. Iliadis, “Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2(100) Si substrates”, SolidState Electronics, 52 (2008) 17101716.
    [16] A. AlHajry, A. Umar, Y. B. Hahn, and D. H. Kim, “Growth, properties and dyesensitized solar cells–applications of ZnO nanorods grown by lowtemperature solution process”, Superlattices and Microstructures, 45 (6) (2009) 529534.
    [17] C. D. Lokhande, P. M. Gondkar, R. S. Mane,V. R. Shinde, and S. H. Han, “CBD grown ZnObased gas sensors and dyesensitized solar cells”, Journal of Alloys and Compounds, 475 (2009) 304311.
    [18] R. B. H. Tahar, “Structural and electrical properties of aluminum-doped zinc oxide films prepared by sol–gel process”, Journal of the European Ceramic Society, 25 (2005) 33013306.
    [19] M. S. Jang, M. K. Ryu, M. H. Yoon, S. H. Lee, H. K. Kim, A. Onodera, and S. Kojima, “A study on the Raman spectra of Al-doped and Gadoped ZnO ceramics”, Current Applied Physics, 9 (2009) 651657.
    [20] O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L.Chow, T. Shishiyanu, V.Sontea, E. Monaico, S. Railean, “Synthesis of nanostructured Aldoped zinc oxide films on Si for solar cells applications”, Solar Energy Materials & Solar Cells, 93 (2009) 1417–1422.

    [21] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 50 (2005) 293340.
    [22] S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, W. F. Hsieh, “Effects of doping concentration and annealing temperature on properties of highly-oriented Aldoped ZnO films”, Journal of Crystal Growth, 287 (2006) 7884.
    [23] P. Uthirakumar and C. H. Hong, “Effect of annealing temperature and pH on morphology and optical property of highly dispersible ZnO nanoparticles”, Materials Characterization (2009).
    [24] M. Gratzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338344.
    [25] A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, and J. R. Durrant, “Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films”, Journal of Physical Chemistry B, 109 (2005) 1252512533.
    [26] A. Morandeira, G. Boschloo, A. Hagfeldt, and L. Hammarstrom, “Coumarin 343NiO films as nanostructured photocathodes in dye-sensitized solar cells: ultrafast electron transfer, effect of the I3/I redox couple and mechanism of photocurrent generation”, Journal of Physical Chemistry C, 112 (2008) 95309537.
    [27] F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Ru1hle, and D. Cahen, “Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states”, Journal of Physical Chemistry B, 105 (2001) 63476352.
    [28] J. Halme, “Dyesensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests”, Helsinki University of Technology, (2002) 30.

    [29] J. G. de Vries, B. J. R. Scholtens, I. Maes, M. Gratzel, S. Winkel, S. Burnside, M. Wolf, A. Hinsch, J. M. Kroon, M. Ahlse, F. Tjerneld, G. Ferrero, E. Bruno, A. Hagfeldt, C. Bradbury, P. Carlsson, H. Pettersson, C. M. VerspeekRip, and I. C. Enning, “Negative amestest of cisdi(thiocyanato) N, N'bis(4,4'dicarboxy2,2'bipyridine)Ru(II), the sensitizer dye of the nanocrystalline TiO2 solar cell”, Solar Energy Materials & Solar Cells, 60 (2000) 4349.
    [30] A. Hagfeldt and M. Gratzel, “Molecular photovoltaics”, Accounts of Chemical Research, 33 (2000) 269.
    [31] M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorganic Chemistry, 44 (2005) 6841-6851.
    [32] V. Thavasi, V. Renugopalakrishnan, R. Jose, and S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Materials Science and Engineering R, 63 (2009) 8199.
    [33] M. Späth, P. M. Sommeling, J. Wienke, J. A. M. van Roosmalen, and W. C. Sinke, “Stability of sealed nanocrystalline organic photovoltaic devices”, Netherlands Energy Research Foundation ECN, 1 (1996) 1755.
    [34]林明獻, “太陽能電池技術入門”, 第二章 (2007).
    [35] M. Gratzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338.
    [36] M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, “Comparison of dyesensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime”, Journal of Physical Chemistry C, 111 (2007) 1035.
    [37] Dittrich, Th. Lebedev, and E. A. Weidmann, “Electron drift mobility in porous TiO2 (anatase)”, Physica Satus Solidi A, R5 (1998) 165.
    [38] C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt, “Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO”, The Journal of Physical Chemistry B, 105 (2001) 55855589.

    [39] C. Bauer, C. Boschloo, G. Mukhtar, and A. Hagfeldt, “Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO”, Journal of Physical Chemistry B, 105 (2001) 5508.
    [40] T. P. Chou, Q. Zhang, and G. Cao, “Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dyesensitized solar cells”, Journal Physical Chemistry C, 111(50) (2007) 1880418811.
    [41] M. Adachi, J. Jiu, S. Isoda, Y. Mori, and F. Uchida, “Selfassembled nanoscale architecture of TiO2 and application for dyesensitized solar cells”, Nanotechnology Science and Applications, 1 (2008) 1–7.
    [42] E. Galoppinim, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dyesensitized ZnO nanorod solar cells”, Physical Chemistry B, 110 (2006) 1615916161.
    [43] N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering R, 60 (2008) 151.
    [44] L. Ding, Z. Yinmin, and W. Yuren, “From hexagonally arrayed nanorods to ordered porous film through controlling the morphology of ZnO crystals”, Applied Surface Science, 254 (2008) 58495853.
    [45] J. Elias, R. TenaZaera, and C. LevyClement, “Electrochemical deposition of ZnO nanowire arrays with tailored dimensons”, Journal of Electroanalytical Chemistry, 621 (2008) 171177.
    [46] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, Journal of Materials Chemistry, 14 (2004) 25752591.
    [47] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, Journal of Materials Chemistry, 12 (2002) 37733778.

    [48] Y. Kokubun, H. Kimura, and S. Nakagomi, “Preparation of ZnO thin films on sapphire substrates by solgel method”, Japanese Journal of Applied Physics, 42 (2003) 904906.
    [49] G. Hodes, “Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition”, Physical Chemistry Chemical Physics, 9 (2007) 21812196.
    [50] 陳慧英、黃定加、朱秦億 “溶膠凝膠法在製備膜薄上之應用” 化工技術, 7 (11) (1999) 152166.
    [51] J. Song and S. Lim, “Effect of seed layer on the growth of ZnO nanorods”, Journal of Physical Chemistry C, 111(2) (2007) 596600.
    [52] G. Cao, “Nanostructures and nanomaterials: synthesis, properties, and application”, Imperial College Press, 1 (2004) 111.
    [53] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203 (1999) 186196.
    [54] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine”, Journal of SolGel Science Technology, 39 (2006) 49–56.
    [55] J. M. Jang, S. D. Kim, H. M. Choi., J. Y. Kim, and W.G. Jung, “Morphology change of selfassembled ZnO 3D nanostructures with different pH in the simple hydrothermal process”, Materials Chemistry and Physics, 113 (2009) 389394.
    [56] M. N. R. Ashfold, R. P. Doherty, N. G. NdiforAngwafor, D. J. Riley, and Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures”, Thin Solid Films, 515 (2007) 86798683.
    [57] H. Gao, G. Fang, M. Wang, N. Liu, L. Yuan, C. Li, L. Ai, J. Zhang, C. Zhou, S. Wu, and X. Zhao, “The effect of growth conditions on the properties of ZnO nanorod dyesensitized solar cells”, Materials Research Bulletin, 43 (2008) 33453351.
    [58] Z. Chen and L. Gao, “A facile route to ZnO nanorod arrays using wet chemical method”, Journal of Crystal Growth, 293 (2006) 522527.
    [59] M. Wang, C. H. Ye, Y. Zhang, H. X. Wang, X. Y. Zeng, and L. D. Zhang, “Seedlayer controlled synthesis of wellaligned ZnO nanowires arrays via a low temperature aqueous solution method”, Journal of Materials Science: Mater Electron, 19 (2008) 211216.
    [60] M. Law, L. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dyesensitized solar cells”, Nature Materials, 4 (2005) 455459.
    [61] J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, Nanotechnology, 17 (2006) S304S312.
    [62] M. S. Akhtar, M. A. Khan, M. S. Jeon, and O. B. Yang, “Controlled synthesis of various ZnO nanostructured materials by capping agentsassisted hydrothermal method for dyesensitized solar cells”, Electrochimica Acta, 53 (2008) 78697874.
    [63] R. S. Mane, W. J. Lee, C. D. Lokhande, B. W. Cho, and S. H. Han, “Controlled repeated chemical growth of ZnO films for dyesensitized solar cells”, Current Applied Physics, 8 (2008) 549553.
    [64] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, Journal Material Chemistry, 12 (2002) 3773–3778.
    [65] S. O'Brien, L. H. K. Koh, and G. M. Crean, “ZnO thin films prepared by a single step sol–gel process”, Thin Solid Films, 516 ( 2008) 1391–1395.
    [66] J. Song and S. Lim, “Effect of seed layer on the growth of ZnO nanorods”, The Journal of Physical Chemistry C, 111 (2007) 596–600.
    [67] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solution”, Advanced Materials, 15 (2003) 15.
    [68] M. N. R. Ashfold, R. P. Doherty, N. G. NdiforAngwafor, D. J. Riley, and Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures”, Thin Solid Films, 515 (2007) 8679–8683.

    [69] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, “Structural, electrical and optical properties of sol–gel AZO thin films”, Current Applied Physics, 9 (2009) 683–687.
    [70] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, “Structural, electrical and optical properties of solgel AZO thin films”, Current Applied Physics, 9 (2009) 683687.
    [71] R. Zhang, J. Pan, E. P. Briggs, M. Thrash, and L. L. Kerr, “Studies on the adsorption of RuN3 dye on sheet-like nanostructured porous ZnO films”, Solar Energy Materials & Solar Cells, 92 (2008) 425–431.
    [72] K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, and H. Siegbahn, “Nanostructured ZnO electrodes for dyesensitized solar cell applications”, Journal of Photochemistry A: Chemistry, 148 (2002) 5764.

    下載圖示
    QR CODE