研究生: |
陳冠文 |
---|---|
論文名稱: |
水熱法成長氧化鋅奈米線陣列應用於染料敏化太陽能電池 Application of ZnO nanowire array on the electrode of dye-sensitized solar cell by hydrothermal method |
指導教授: | 程金保 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 氧化鋅 、水熱法 、摻雜鋁 、染料敏化太陽能電池 |
英文關鍵詞: | ZnO, hydrothermal method, doped Al, DSSC |
論文種類: | 學術論文 |
相關次數: | 點閱:221 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用溶膠凝膠法(sol gel method)製備氧化鋅薄膜,作為成長氧化鋅奈米線陣列基底,經退火處理後,可得到高結晶的微小表面顆粒種子層;水熱法(Hydrothermal method)的水溶液環境中利用氧化鋅特有極性表面特性,在同質氧化鋅種子層上成長奈米線陣列,控制反應水溶液濃度以及成長時間,製備出高準直性的奈米線陣列,得到最佳的電極長度與長寬比(L=2300 nm, L/D=46)。在水熱環境中摻雜2 at.%鋁使氧化鋅奈米線增強結晶性,使長寬比由46增加至60.5,改善電極表面形貌,鋁離子的嵌入亦能增強電子傳導性與材料表面極性,使奈米線電極對染料吸附能力增加、抑止ZnO2+/dye錯合物的產生。以更換反應水溶液方式持續成長摻雜鋁奈米線增加體表面積,接續成長方式使電極長度由2.3 m增加至6.6 m,而效率則由0.152%提升至0.834%。摻雜2 at.%鋁氧化鋅奈米線電極,在相似長度下(約6.5 m),改善電池效率由純氧化鋅奈米線陣列的0.492%提升至0.834%。
n this study, the use of sol-gel method preparation of ZnO thin film, as the growth of zinc oxide nanowire array substrate, after annealing, will be high crystallinity of the small surface particles seed layer. Hydrothermal method in the aqueous environment specific to the use of zinc oxide polar surface properties, in the same seed layer of zinc oxide nanowire array growth, control reaction in aqueous solution concentration, as well as the growth time, the preparation of high collimation of the nanowire arrays. The most good length and aspect ratio of the electrode (L = 2300 nm, L / D = 46). Hydrothermal environments in the doping 2 at.% Aluminum zinc oxide nanowire crystalline enhanced, so that aspect ratio increased to 60.5 from 46, to improve the electrode surface morphology, aluminum ion can embed and enhance the electronic conductivity of materials surface polarity, so that nanowire electrode to increase the adsorption capacity of dye, the stifling of the ZnO2+ / dye complexes generated wrong. Way to replace the reaction of aqueous solution growth of aluminum-doped nanowire increased body surface area, continued growth means the length of electrode from 2.3 m to 6.6 m, and the efficiency of up to 0.152 percent from 0.834 percent. Doped 2 at.% Aluminum zinc oxide nanowire electrode, similar in length in the next (about 6.5 m), to improve the efficiency of the battery from pure zinc oxide nanowire arrays of 0.492% to 0.834%.
[1] German Advisory Council on Global Change, “World in transition: turning energy systems towards sustainability” (2003).
[2] 張品全, “科學發展”, 349期 (2002) 2229.
[3] http://solarpv.itri.org.tw
[4] http://www.globalwarmingart.com/
[5] http://www.electrosolar.co.uk
[6] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables”, Progress in Photovoltaics: Research and Applications, 16 (2008) 435440.
[7] M. S. Akhtar, M. A. Khan, M. S. Jeon, and O. B. Yang, “Controlled synthesis of various ZnO nanostructured materials by capping agentsassisted hydrothermal method for dye-sensitized solar cells”, Electrochimica Acta, 53 (2008) 78697874.
[8] J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Z. Lan, and P. Li, “Crystal morphology of anatase titania nanocrystals used in dye-sensitized solar cells”, Crystal Growth Design, 8 (1) (2008) 247252.
[9] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dyesensitized ZnO nanorod solar cells”, The Journal of Physical Chemistry B, 110 (2006) 1615916161.
[10] A. V. Singh, R. M. Mehra, A. Yoshida, and A. Wakahara, “Doping mechanism in aluminum doped zinc oxide films”, Journal of Applied Physics, 95 (2004) 36403643.
[11] T. Oekermann, T. Yoshida, C. Boeckler, J. Caro, and H. Minoura, “Capacitance and fielddriven electron transport in electrochemically selfassembled nanoporous ZnO/dye hybrid films”, Journal of Physical Chemsitry B, 109 (2005) 12560-12566.
[12] K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, “Studied of the adsorption process of Ru complexes in nanoporous ZnO electrodes”, Langmuir, 16 (2000) 46884694.
[13] Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology”, Materials Science and Engineering R, 64 (2009) 33–71.
[14] R. Wang, L. H. King, and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, Journal of Materials Research, 11 (1996) 16591664.
[15] S. Krishnamoorthy and A. A. Iliadis, “Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2(100) Si substrates”, SolidState Electronics, 52 (2008) 17101716.
[16] A. AlHajry, A. Umar, Y. B. Hahn, and D. H. Kim, “Growth, properties and dyesensitized solar cells–applications of ZnO nanorods grown by lowtemperature solution process”, Superlattices and Microstructures, 45 (6) (2009) 529534.
[17] C. D. Lokhande, P. M. Gondkar, R. S. Mane,V. R. Shinde, and S. H. Han, “CBD grown ZnObased gas sensors and dyesensitized solar cells”, Journal of Alloys and Compounds, 475 (2009) 304311.
[18] R. B. H. Tahar, “Structural and electrical properties of aluminum-doped zinc oxide films prepared by sol–gel process”, Journal of the European Ceramic Society, 25 (2005) 33013306.
[19] M. S. Jang, M. K. Ryu, M. H. Yoon, S. H. Lee, H. K. Kim, A. Onodera, and S. Kojima, “A study on the Raman spectra of Al-doped and Gadoped ZnO ceramics”, Current Applied Physics, 9 (2009) 651657.
[20] O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L.Chow, T. Shishiyanu, V.Sontea, E. Monaico, S. Railean, “Synthesis of nanostructured Aldoped zinc oxide films on Si for solar cells applications”, Solar Energy Materials & Solar Cells, 93 (2009) 1417–1422.
[21] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 50 (2005) 293340.
[22] S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, W. F. Hsieh, “Effects of doping concentration and annealing temperature on properties of highly-oriented Aldoped ZnO films”, Journal of Crystal Growth, 287 (2006) 7884.
[23] P. Uthirakumar and C. H. Hong, “Effect of annealing temperature and pH on morphology and optical property of highly dispersible ZnO nanoparticles”, Materials Characterization (2009).
[24] M. Gratzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338344.
[25] A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, and J. R. Durrant, “Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films”, Journal of Physical Chemistry B, 109 (2005) 1252512533.
[26] A. Morandeira, G. Boschloo, A. Hagfeldt, and L. Hammarstrom, “Coumarin 343NiO films as nanostructured photocathodes in dye-sensitized solar cells: ultrafast electron transfer, effect of the I3/I redox couple and mechanism of photocurrent generation”, Journal of Physical Chemistry C, 112 (2008) 95309537.
[27] F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Ru1hle, and D. Cahen, “Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states”, Journal of Physical Chemistry B, 105 (2001) 63476352.
[28] J. Halme, “Dyesensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests”, Helsinki University of Technology, (2002) 30.
[29] J. G. de Vries, B. J. R. Scholtens, I. Maes, M. Gratzel, S. Winkel, S. Burnside, M. Wolf, A. Hinsch, J. M. Kroon, M. Ahlse, F. Tjerneld, G. Ferrero, E. Bruno, A. Hagfeldt, C. Bradbury, P. Carlsson, H. Pettersson, C. M. VerspeekRip, and I. C. Enning, “Negative amestest of cisdi(thiocyanato) N, N'bis(4,4'dicarboxy2,2'bipyridine)Ru(II), the sensitizer dye of the nanocrystalline TiO2 solar cell”, Solar Energy Materials & Solar Cells, 60 (2000) 4349.
[30] A. Hagfeldt and M. Gratzel, “Molecular photovoltaics”, Accounts of Chemical Research, 33 (2000) 269.
[31] M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorganic Chemistry, 44 (2005) 6841-6851.
[32] V. Thavasi, V. Renugopalakrishnan, R. Jose, and S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Materials Science and Engineering R, 63 (2009) 8199.
[33] M. Späth, P. M. Sommeling, J. Wienke, J. A. M. van Roosmalen, and W. C. Sinke, “Stability of sealed nanocrystalline organic photovoltaic devices”, Netherlands Energy Research Foundation ECN, 1 (1996) 1755.
[34]林明獻, “太陽能電池技術入門”, 第二章 (2007).
[35] M. Gratzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338.
[36] M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, “Comparison of dyesensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime”, Journal of Physical Chemistry C, 111 (2007) 1035.
[37] Dittrich, Th. Lebedev, and E. A. Weidmann, “Electron drift mobility in porous TiO2 (anatase)”, Physica Satus Solidi A, R5 (1998) 165.
[38] C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt, “Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO”, The Journal of Physical Chemistry B, 105 (2001) 55855589.
[39] C. Bauer, C. Boschloo, G. Mukhtar, and A. Hagfeldt, “Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO”, Journal of Physical Chemistry B, 105 (2001) 5508.
[40] T. P. Chou, Q. Zhang, and G. Cao, “Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dyesensitized solar cells”, Journal Physical Chemistry C, 111(50) (2007) 1880418811.
[41] M. Adachi, J. Jiu, S. Isoda, Y. Mori, and F. Uchida, “Selfassembled nanoscale architecture of TiO2 and application for dyesensitized solar cells”, Nanotechnology Science and Applications, 1 (2008) 1–7.
[42] E. Galoppinim, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dyesensitized ZnO nanorod solar cells”, Physical Chemistry B, 110 (2006) 1615916161.
[43] N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering R, 60 (2008) 151.
[44] L. Ding, Z. Yinmin, and W. Yuren, “From hexagonally arrayed nanorods to ordered porous film through controlling the morphology of ZnO crystals”, Applied Surface Science, 254 (2008) 58495853.
[45] J. Elias, R. TenaZaera, and C. LevyClement, “Electrochemical deposition of ZnO nanowire arrays with tailored dimensons”, Journal of Electroanalytical Chemistry, 621 (2008) 171177.
[46] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, Journal of Materials Chemistry, 14 (2004) 25752591.
[47] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, Journal of Materials Chemistry, 12 (2002) 37733778.
[48] Y. Kokubun, H. Kimura, and S. Nakagomi, “Preparation of ZnO thin films on sapphire substrates by solgel method”, Japanese Journal of Applied Physics, 42 (2003) 904906.
[49] G. Hodes, “Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition”, Physical Chemistry Chemical Physics, 9 (2007) 21812196.
[50] 陳慧英、黃定加、朱秦億 “溶膠凝膠法在製備膜薄上之應用” 化工技術, 7 (11) (1999) 152166.
[51] J. Song and S. Lim, “Effect of seed layer on the growth of ZnO nanorods”, Journal of Physical Chemistry C, 111(2) (2007) 596600.
[52] G. Cao, “Nanostructures and nanomaterials: synthesis, properties, and application”, Imperial College Press, 1 (2004) 111.
[53] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203 (1999) 186196.
[54] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine”, Journal of SolGel Science Technology, 39 (2006) 49–56.
[55] J. M. Jang, S. D. Kim, H. M. Choi., J. Y. Kim, and W.G. Jung, “Morphology change of selfassembled ZnO 3D nanostructures with different pH in the simple hydrothermal process”, Materials Chemistry and Physics, 113 (2009) 389394.
[56] M. N. R. Ashfold, R. P. Doherty, N. G. NdiforAngwafor, D. J. Riley, and Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures”, Thin Solid Films, 515 (2007) 86798683.
[57] H. Gao, G. Fang, M. Wang, N. Liu, L. Yuan, C. Li, L. Ai, J. Zhang, C. Zhou, S. Wu, and X. Zhao, “The effect of growth conditions on the properties of ZnO nanorod dyesensitized solar cells”, Materials Research Bulletin, 43 (2008) 33453351.
[58] Z. Chen and L. Gao, “A facile route to ZnO nanorod arrays using wet chemical method”, Journal of Crystal Growth, 293 (2006) 522527.
[59] M. Wang, C. H. Ye, Y. Zhang, H. X. Wang, X. Y. Zeng, and L. D. Zhang, “Seedlayer controlled synthesis of wellaligned ZnO nanowires arrays via a low temperature aqueous solution method”, Journal of Materials Science: Mater Electron, 19 (2008) 211216.
[60] M. Law, L. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dyesensitized solar cells”, Nature Materials, 4 (2005) 455459.
[61] J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, Nanotechnology, 17 (2006) S304S312.
[62] M. S. Akhtar, M. A. Khan, M. S. Jeon, and O. B. Yang, “Controlled synthesis of various ZnO nanostructured materials by capping agentsassisted hydrothermal method for dyesensitized solar cells”, Electrochimica Acta, 53 (2008) 78697874.
[63] R. S. Mane, W. J. Lee, C. D. Lokhande, B. W. Cho, and S. H. Han, “Controlled repeated chemical growth of ZnO films for dyesensitized solar cells”, Current Applied Physics, 8 (2008) 549553.
[64] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, Journal Material Chemistry, 12 (2002) 3773–3778.
[65] S. O'Brien, L. H. K. Koh, and G. M. Crean, “ZnO thin films prepared by a single step sol–gel process”, Thin Solid Films, 516 ( 2008) 1391–1395.
[66] J. Song and S. Lim, “Effect of seed layer on the growth of ZnO nanorods”, The Journal of Physical Chemistry C, 111 (2007) 596–600.
[67] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solution”, Advanced Materials, 15 (2003) 15.
[68] M. N. R. Ashfold, R. P. Doherty, N. G. NdiforAngwafor, D. J. Riley, and Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures”, Thin Solid Films, 515 (2007) 8679–8683.
[69] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, “Structural, electrical and optical properties of sol–gel AZO thin films”, Current Applied Physics, 9 (2009) 683–687.
[70] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, “Structural, electrical and optical properties of solgel AZO thin films”, Current Applied Physics, 9 (2009) 683687.
[71] R. Zhang, J. Pan, E. P. Briggs, M. Thrash, and L. L. Kerr, “Studies on the adsorption of RuN3 dye on sheet-like nanostructured porous ZnO films”, Solar Energy Materials & Solar Cells, 92 (2008) 425–431.
[72] K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, and H. Siegbahn, “Nanostructured ZnO electrodes for dyesensitized solar cell applications”, Journal of Photochemistry A: Chemistry, 148 (2002) 5764.