研究生: |
吳柏菱 Wu, Po-Ling |
---|---|
論文名稱: |
國小學童在STEM整合學習中的知識建構研究:以氣候變遷議題探究為例 A Study on Elementary Students’ Knowledge Construction in STEM Integrated Learning: Taking the Exploration of Climate Change Issues as an Example |
指導教授: |
甄曉蘭
Chen, Hsiao-Lan |
口試委員: |
林坤誼
Lin, Kuen-Yi 段曉林 Tuan, Hsiao-Lin 周金城 Chou, Chin-Cheng 高翠霞 kao, Trai-shar 甄曉蘭 Chen, Hsiao-Lan |
口試日期: | 2024/01/12 |
學位類別: |
博士 Doctor |
系所名稱: |
課程與教學研究所 Graduate Institute of Curriculum and Instruction |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 374 |
中文關鍵詞: | STEM整合學習 、知識建構 、識知取徑 、氣候變遷教育 |
英文關鍵詞: | STEM integrated learning, knowledge construction, approaches toward knowledge construction, climate change education |
研究方法: | 質性研究 |
DOI URL: | http://doi.org/10.6345/NTNU202400285 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:29 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討國小學童根據氣候變遷議題進行STEM(科學、科技、工程、數學)整合學習的知識建構與識知取徑,主要透過質性研究取徑探究學生的「氣候變遷」先備知識和對「氣候變遷」概念的理解,並探究學生以氣候變遷議題進行STEM整合學習時建構的知識內容、類型與識知取徑,進而瞭解各學科知識與識知取徑在STEM整合學習中發生的交互作用,最後則根據研究發現提出對未來發展STEM整合課程與教學的建議。研究首先對108位國小六年級學生的氣候變遷先備知識與概念理解進行調查與分析,其後則透過課堂討論影音紀錄以及相關學習文件的蒐集與分析,聚焦於探討10組共24位學生在以氣候變遷議題進行STEM整合學習時的知識建構過程與樣態。研究發現如下:
一、 國小學生普遍缺乏「氣候變遷」先備知識,對「氣候變遷」的理解亦顯模糊且存有不少迷思概念,並在設想探究方法時會輕忽論證程序。
二、 STEM整合學習,不僅有助於學生立基於真實的在地氣候資料來建構「氣候變遷」知識,亦能幫助學生建構內容豐富、類型多元、跨科密切連結的科學、資訊科技與數學學科知識,從中也揭露了學生在各學科潛存的迷思概念,以及迷思概念可能跨越學科產生影響。
三、 學生在STEM整合學習中會交互運用多元的學科識知取徑來建構知識,展現出以科學識知取徑導引探究發展、以資訊科技識知取徑支持探究實踐、並且以數學識知取徑豐富探究內涵。
四、 學生的科學、資訊科技與數學學科知識或識知取徑在進行STEM整合學習時會產生交互作用,促使學生精煉各學科的知識建構;但也可能因誤用不同學科知識或迷思概念而轉移學科學習焦點,導致學生建構學科知識時增加認知負荷。另外,學生的語文知識對其建構與溝通科學、資訊科技與數學等學科知識至關重要,而人際知識亦可能影響學生建構知識的效能。
根據研究發現,建議STEM整合學習的課程規劃應結合與真實生活情境相關的議題,並透過不同學科教師協同合作,以增加教師對相關學科知識與課程主題的敏覺;STEM整合學習的教學設計須奠基於對學生先備知識的理解,隨時根據學生學習發展調整教學策略並提供學習支援。而在「氣候變遷」議題融入教學時,則可透過STEM整合學習來引導學生強化「論證」能力。
This study aims to explore elementary students’ knowledge construction in STEM (Science, Technology, Engineering, Mathematics) integrated learning on climate change issues. The study mainly adopted a qualitative research approach to examine students’ prior knowledge and their understanding of “climate change” concepts, and to explore the knowledge substance and dimensions students constructed as well as the approaches they applied toward knowledge construction when they engaging in STEM integrated learning on climate change issues; and then to understand the interaction between students' knowledge of various subjects and different ways of knowing in the STEM integrated learning process. This study first investigated into the prior knowledge and understanding of “climate change” concepts among 108 sixth-grade elementary students, and then, based on the audio-visual records of students’ discussions and their learning worksheets and related documents, the analyses were focused on the knowledge construction processes and patterns of 10 groups of 24 students in STEM integrated learning on climate change issues. The research findings are as follows:
1. Elementary students generally lack prior knowledge of "climate change", have unclear understanding and myth conceptions of the concept of "climate change", and may ignore the reasoning and argumentation procedures when constructing their inquiry methods.
2. The STEM integrated learning not only allows students to construct knowledge about "climate change" based on the real local climate data, but also helps students construct rich, multi-dimensional knowledge in science, information technology and mathematics subjects that are closely connected to each other subject. It also reveals that the myth conceptions students have in various subjects may have certain knock-on effects in other subjects.
3. In STEM integrated learning, students would interrelatedly use multi-disciplinary approaches to construct knowledge, demonstrating that they use scientific ways of knowing to guide the development of inquiry, use information technology approaches to support the practice of inquiry, and use mathematical approaches to enrich the connotation of inquiry.
4. Students’ subject knowledge or approaches toward knowledge construction in science, information technology and mathematics will have interactive effects during STEM integrated learning, prompting students to refine knowledge construction in each subject; however, students may also misuse subject knowledge or myth conceptions to shift their focus of subject learning which may cause students to increase their cognitive load when constructing subject knowledge. In addition, students’ language literacy is crucial for them to communicate and construct knowledge in science, information technology and mathematics, and their interpersonal knowledge and skills may also affect the effectiveness in constructing knowledge.
Based on the research findings of the study, it is recommended that the curriculum planning of STEM integrated learning should respond to authentic real life issues, and through the collaboration of teachers from different subjects, teachers can increase their sensitivity of relevant subject knowledge and curriculum themes. Also, the teaching design of STEM integrated learning should be based on understanding of students' prior knowledge, and then to adjust teaching strategies and provide learning support according to the development of students’ learning. As for integrating the "climate change" issue into classroom teaching, more emphasis should be placed on guiding students to learn "reasoning and argumentation" through STEM integration.
Froschauer, L.(2020). 課堂中的STEM教育:核心素養與教學實踐(游雅婷審譯)。碩亞數碼。(原著出版於2016年).
王嘉賢(2020)。基於工程設計流程的STEM專題本位課程對國小高年級生學習成效之影響〔未出版之碩士論文〕。國立中央大學。
交通部中央氣象署(無日期)。全球暖化與氣候變遷。交通部中央氣象署。2022年2月1日,取自https://www.cwb.gov.tw/V8/C/C/Change/change_1.html
朱耀明(2011)。「動手做」的學習意涵分析—杜威的經驗學習觀點。生活科技教育月刊,44(2),32-43。https://doi.org/10.6232/lte.2011.44(2).4
朱耀明(2018)。中小學自造者教育的推動與實踐。教育研究月刊,288,31-41。https://doi.org/10.3966/168063602018040288003
余勝泉、胡翔(2015)。STEM教育理念與跨學科整合模式。開放教育研究,21(4), 13-22。
吳柏菱(2016)。電磁玩具動起來。翰林國小自然探險期刊,6,15-17。
吳柏菱、楊世昌(2010)。「夸父追日」現代版。載於臺北市教育局(主編),臺北市第十一屆教育專業創新與行動研究成果彙編(下冊)─創新教學活動設計類與教材教具實物展示類(457-474)。台北市教育局。https://eiar.tp.edu.tw/UploadFile/Before2021/III-19.pdf
李亭儀(2022)。臺灣氣候變遷研究。中華民國第62屆中小學科學展覽會─國小組地球科學科作品。
阮奕銘(2020)。探討工程設計為取向之STEM課程對學生科學概念的建構及學習動機之影響〔未出版之碩士論文〕。國立彰化師範大學。
周芬美、段曉林(2019)。以自我效能激發策略融入STEM統整活動對國中學生STEM學習效能之探討。科技與人力教育季刊,5(4),26-49。https://doi.org/10.6587/JTHRE.201906_5(4).0002
林坤誼(2018)。STEM教育在台灣推行的現況與省思。青年研究學報,21(1),1-9。
林坤誼(2020.6.2)。STEM的迷思與真實:系列教學實驗研究的驗證。國立臺灣師範大學研究亮點網。https://rh.acad.ntnu.edu.tw/tw/article/content/37
林坤誼(2021)。STEM跨領域教學合作設計模式與有效失敗經驗設計之研究。人文社會科學研究:教育類,15(2),1-18。 https://doi.org/10.6618/HSSRP.202106_15(2).1
柯雨彤、侯承睿、吳嘉毓、劉人鳳(2008)。染出一片光明─染料敏化太陽能電池特性探討。臺灣網路科教館。https://www.ntsec.edu.tw/science/detail.aspx?a=21&cat=59&sid=3391
洪聖宇(2020)。探討於STEM課程中十年級學生科學概念、工程設計能力及STEM態度之間的關係〔未出版之碩士論文〕。國立彰化師範大學。
范斯淳、游光昭(2016)。科技教育融入STEM課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。https://doi.org/10.6209/JORIES.2016.61(2).06
馬宜平(2020)。實施S.T.E.M教育的困難與解決策略。臺灣教育評論月刊,9(7),70-75。
高翠霞(2017)。環境教育議題配合領域教學實施示例計畫成果報告。教育部。
國家教育研究院(2020)。十二年國民基本教育課程綱要-議題融入說明手冊。
張仁家、林癸妙(2019)。美國STEM教育的發展沿革與經驗─以俄亥俄州為例。科技與人力教育季刊,5(4),1-25。
張玉山(2018)。STEAM Maker跨域整合,實踐十二年國教。臺灣教育評論月刊,7(2),01-05。
張新仁(編)(2003)。學習與教學新趨勢。心理。
教育部(2003)。國民中小學九年一貫課程綱要。https://www.k12ea.gov.tw/Tw/Common/SinglePage?filter=F34E9417-8374-4A02-97CC-0DEDFD13514F
教育部(2018)。十二年國民基本教育課程綱要-國民中小學暨普通型高級中等學校自然科學領域。https://www.naer.edu.tw/upload/1/16/doc/2064/%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%B8%E9%A0%98%E5%9F%9F%E8%AA%B2%E7%A8%8B%E6%89%8B%E5%86%8A(%E5%AE%9A%E7%A8%BF%E7%89%88).pdf
教育部(2018)。十二年國民基本教育課程綱要-國民中小學暨普通型高級中等學校語文領域─國語文。https://cirn.moe.edu.tw/Upload/file/25933/72247.pdf
教育部(2018)。十二年國民基本教育課程綱要-國民中小學暨普通型高級中等學校數學領域。https://cirn.moe.edu.tw/Upload/file/27338/72246.pdf
教育部(2020)。十二年國民基本教育課程綱要-國民中小學暨普通型高級中等學校議題融入說明手冊。https://cirn.moe.edu.tw/WebContent/index.aspx?sid=11&mid=7318
教育部(2020)。永續發展目標(SDGs)教育手冊。https://daisr.asia.edu.tw/xhr/announcements/file/620b40210c41f9e54a0457f1/%E6%B0%B8%E7%BA%8C%E7%99%BC%E5%B1%95%E7%9B%AE%E6%A8%99_SDGs_%E6%95%99%E8%82%B2%E6%89%8B%E5%86%8A-%E8%87%BA%E7%81%A3%E6%8C%87%E5%8D%97_%E5%B9%B3%E8%A3%9D_.pdf
教育部(2021)。氣候變遷教育教師手冊。https://ghresource.k12ea.gov.tw/uploads/1650423715736AKha6s7m.pdf
陳冠吟(2015)。STEM 取向的科技教育-以鼠夾車為例。科技與人力教育季刊,2(1),63-81。
陳彥霖、蔡郁晨、李佳穎、楊世昌、吳柏菱(2011)。冷鋒來臨前後期間,氣壓和氣溫的 變化相關性及冷鋒來襲頻率增加對氣壓和氣溫變化影響探究。氣象局官網。http://photino.cwb.gov.tw/rdcweb/lib/cd/cd01conf/load/epdf/e008.pdf
陳羿瑋、李翊維、熊心瑜、李宜瑾、林聖超(2008)。照過來!看我為太陽能板擺POSE。臺灣網路科教館。https://www.ntsec.edu.tw/Science-Content.aspx?cat=&a=0&fld=&key=&isd=1&icop=10&p=336&sid=3430
陳毓凱、張基成、吳明德、陳怡靜(2015)。運用專題本位學習於統整式STEM教學設計之研究-以高中夏令營隊為例。載於社團法人台灣工程教育與管理學會(主編),第四屆工程與科技教育學術研討會論文集(245-257)。社團法人台灣工程教育與管理學會。https://doi.org/10.6571/CETE.2015.04.20
曾文瑄、黃以寧、蘇元駿、林長星(2001)。變色筆DIY。臺灣網路科教館。https://www.ntsec.edu.tw/science/detail.aspx?a=21&cat=38&sid=427
童慶斌(2019)。中小學教師氣候變遷教學必備知識[PowerPoint投影片]。氣候變遷教學資訊平台。https://climatechange.tw/Climate/EducationMaterials?pageId=109
黃茂在、陳文典(2004)。「問題解決」的能力。科學教育月刊,273,21-41。
黃國禎(2020)。STEM STEAM與跨學科教育的導入模式及教學策略。教育研究月刊,320,4-22。
楊亞平(2015)。美國、德國與日本中小學STEM教育比較研究。外國中小學教育,8,23-30。
楊嵐智、高翠霞(2019)。環境教育議題融入課程的回顧與展望。教育研究與發展期刊,15(2),1-25。https://doi.org/10.3966/181665042019061502001
葉欣誠(2021)。氣候變遷教育結合永續發展教育[PowerPoint投影片]。教育部110年中小學氣候變遷講習簡報。
甄曉蘭(2014)。課程理論與實務-解構與重建。
綠色和平Greenpeace(2021.8.17)。極端氣候有哪些?熱浪、林火、乾旱、暴雨、霸王級寒流,成為未來的新日常?。綠色和平。https://www.greenpeace.org/taiwan/update/26815/%E6%9A%B4%E9%9B%A8%E3%80%81%E7%86%B1%E6%B5%AA%E3%80%81%E4%B9%BE%E6%97%B1%E3%80%81%E5%A4%A7%E7%81%AB%EF%BC%8C%E6%88%90%E7%82%BA%E6%9C%AA%E4%BE%86%E7%9A%84%E6%96%B0%E6%97%A5%E5%B8%B8%EF%BC%9F/
臺北市教育局(2014)。2014臺北市第一屆點子科學競賽。2014年10月25日,取自https://www.doe.gov.taipei/Advanced_Search.aspx?q=%E9%BB%9E%E5%AD%90%E7%A7%91%E5%AD%B8#gsc.tab=0&gsc.q=%E9%BB%9E%E5%AD%90%E7%A7%91%E5%AD%B8&gsc.page=1
蔡依帆、吳心昀(2014)。STEM 整合教學活動-空投救援物資。科技與人力教育季刊,1(1),40-54。
蔡進雄(2019)。各國推動STEM教育的新動態。國家教育研究院電子報,180。https://epaper.naer.edu.tw/edm.php?grp_no=3&edm_no=180&content_no=3176
鄭國明、王仁俊(2017)。國中小學自造教育發展與現況。中等教育,68(2),116-126。https://doi.org/10.6249/SE.2017.68.2.09
駱俞衡(2020)。探討STEM課程對十年級學生工程設計能力及STEM態度的影響〔未出版之碩士論文〕。國立彰化師範大學。
薛欣怡、蔡清華(2021)。德國STEM人才培育策略之探究。臺灣教育評論月刊, 10(8),212-237。
Altan, E. B. & Tan, S.(2021). Concepts of creativity in design based learning in STEM education. International Journal of Technology and Design Education, 31, 503–529. https://doi.org/10.1007/s10798-020-09569-y
Anderson, L.W. & Krathwohl, D.R.(Eds.)(2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives (Complete edition).
Arabit-García, J. & Prendes-Espinosa, M. P.(2020). Methodologies and Technologies to teach STEM in Primary Education: needs analysis. Pixel-Bit. Media and Education Magazine, 57, 107-128. https://doi.org/10.12795/pixelbit.2020.i57.04
Bailey, A., Kaufman, E., & Subotic, S.(2015.3.16). Education, technology, and the 21st century skills gap. Boston Consulting Group (BCG). https://www.bcgperspectives.com/content/articles/public_sector_education_technology_twenty_first_century_skills_gap_wef/
Bardwell, L. V.(1991). Problem-Framing: A perspective on environmental problem-Solving. Environmental Management, 15, 603–612.
Batdi, V., Talan, T., & Semerci, C.(2019). Meta-analytic and meta-thematic analysis of STEM education. International Journal of Education in Mathematics, Science and Technology(IJEMST), 7(4), 382-399.
BELL, D.(1974). The coming of the post industrial society: a venture in social forecasting.
BELL, D.(1999) The Coming of the post industrial society. Special anniversary (ed.).
Berry, J. L., Bihari, J., & Elliott, E.(2016). The limits of knowledge and the climate change debate. Cato Journal, 36(3), 589-610.
Biernacka, B.(2006). Developing scientific literacy of grade five students: A teacher researcher collaborative effort [Unpublished Doctoral dissertation], University of Manitoba, Canada]..
Biggs, J. B. (1992). Modes of learning, forms of knowing, and ways of schooling. In Demetriou, A., Shayer, M. & Efklides, A. (Eds.). Neo-Piagetian theories of cognitive development: Implications and applications for education.( pp.31-51).
Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M.(2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17–66).
Bloom, B.S.(Ed.)(1956). Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain.
Bozkurt, A. & Özyurt, M.(2019) Investigate the Evaluations of Prospective Teacher on STEM Education, Based on Their Experiences with Planning and Implementing STEM Activities. Malaysian Online Journal of Educational Technology(MOJET), 7(4), 81-97. https://doi.org/10.17220/mojet.2019.04.006
Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M.(2012). What is STEM? A discussion about Conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x
Brophy, S. P., Klein, S., Portsmore, M., & Rogers, C.(2008). Advancing Engineering Education in P-12 Classrooms. Journal of Engineering Education, 97(3), 369-387. https://doi.org/10.1002/j.2168-9830.2008.tb00985.x
Brown, J. S., Collins, A., & Duguid, P.(1989 ). Situated Cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
Brunsell, E.(2012). Integrating Engineering and Science in Your Classroom.
Bybee, R, W.(2013). The Case for STEM Education: Challenges and Opportunities.
Bybee, R. W.(2010). Advancing STEM Education: A 2020 Vision. Technology and Engineering Teacher, 70, 30-35.
Catrin, D.(2005). The Information Society and its Policy Agenda: Towards a Human Rights-Based Approach. Revue Québécoise de droit international, 18(1), 57-74. https://doi.org/10.7202/1069239ar
Caymaz, B. & Aydin, A.(2021). The Effect of Common Knowledge Construction Model-Based Instruction on 7th Grade Students’ Academic Achievement and Their Views about the Nature of Science in the Electrical Energy Unit at Schools of Different Socio-economic Levels. International Journal of Science and Mathematics Education, 19, 233–265. https://doi.org/10.1007/s10763-020-10054-0
Chang, B.(2018). Patterns of Knowledge Construction. Adult Education Quarterly, 68(2), 108–136. https://doi.org/ 10.1177/0741713617751174
Chinn, C. A., & Buckland, L. A. (2012). Model-based instruction: Fostering change in evolutionary conceptions and in epistemic practices. In K. S. Rosengren, E. M. Evans, S. Brem, & G. M. Sinatra(Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution (pp. 211–232).
Cirit, D. K.(2020). Global Environmental Problems Based on Common Knowledge Construction Model: Evaluation of “Exploring and Categorizing” Stage. International Online Journal of Educational Sciences, 12(3), 212-229. https://doi.org/10.15345/iojes.2020.03.016
Collins, A.(1993). Design Issues for learning environments. In S. Vosniadou, E. De Corte, R. Glaser, & H. Mandl(Eds.)(1996) International perspectives on the psychological foundations of technology-based learning environments.(pp. 347-361).
Committee on STEM Education(CoSTEM)(2018). Charting a Course for Success: America’s Strategy for STEM Education. National Science and Technology Council(NSTC).
Committee on the Evaluation Framework for Successful STEM Education.(2013). Monitoring progress toward successful K-12 STEM education: A nation advancing? https://doi.org/10.17226/13509
Cook, K. L. & Bush, S. B.(2018). Design thinking in integrated STEAM learning: Surveying the landscape and exploring exemplars in elementary grades. School Science and Mathematics, 118, 93-103. https://doi.org/10.1111/ssm.12268
Council, D. P.(2006). American competitiveness initiative. Office of Science and Technology Policy. Retrieved April, 16, 2007. https://georgewbush-whitehouse.archives.gov/stateoftheunion/2006/aci/aci06-booklet.pdf
Cunningham, C. M. & Kelly, G. J.(2017). Epistemic Practices of Engineering for Education. Science Education, 101, 486-505. https://doi.org/10.1002/sce.21271
Damşa, C. I., Kirschner, P. A., Andriessen, J. E. B., Erkens, G., & Sins, P. H. M.(2010). Shared epistemic agency: An empirical study of an emergent construct. Journal of the Learning Sciences, 19, 143-186. https://doi.org/10.1080/10508401003708381
Dare, E. A., Ellis, J. A., & Roehrig, G. H.(2018). Understanding science teachers’ implementations of integrated STEM curricular units through a phenomenological multiple case study. International Journal of STEM Education, 5(4), 1-19. https://doi.org/10.1186/s40594-018-0101-z
Doll, W. E. Jr.(1989). Foundations of a postmodern curriculum. Journal of Curriculum Studies, 21, 243-253.
Doll, W. E. Jr.(1993). A Post-modern Perspective on Curriculum.
Doug Lombardi, D., Sinatra, G. M., Nussbaum, M.(2013). Plausibility reappraisals and shifts in middle school students' climate change conceptions. Learning and Instruction, 27, 50-62. https://doi.org/10.1016/j.learninstruc.2013.03.001
Drucker, P. F.(2003). A Functioning Society, Selections from Sixty-five Years of Writing on Community, Society and Polity.
Duruk, Ü., Akgün, A., Güngörmez, H. G.(2021). Exploring the impact of common knowledge construction model on students’ understandings of heat transfer. International Journal of Curriculum and Instruction, 13(1), 114–136.
Duschl, R.(2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291. https://doi.org/10.3102/ 0091732X07309371
Education International(2021.4.7). Manifesto: Quality Climate Change Education for All. Education International. https://www.ei-ie.org/en/item/24244:education-international-manifesto-on-quality-climate-change-education-for-all
Ehrlich, P.(1980). An ecologist standing up among seated social scientists. The CoEvolution Quarterly, 31, 24-35.
Eisner, E.W.(1992). Curriculum Ideologies, In P. W. Jackson(Ed.), Handbook of Research on Curriculum(pp. 302-326).
Eisner, E.W.(Ed.).(1985). Learning and Teaching the Ways of Knowing. 84th Yearbook of the NSEE.
English, L. D.(2015). STEM: Challenges and Opportunities for Mathematics Education. In K. Beswick, T. Muir, & J. Wells(Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education(Vol. 1, pp. 4–18).
English, L. D.(2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(3). https://doi.org/10.1186/s40594-016-0036-1
English, L. D., & King, D. T.(2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(14), 1–18. https://doi.org/10.1186/s40594-015-0027-7
Estapa, A. T. & Tank, K. M.(2017). Supporting integrated STEM in the elementary classroom: a professional development approach centered on an engineering design challenge. International Journal of STEM Education, 4(6). https://doi.org/10.1186/s40594-017-0058-3
Fairclough, N. (2003). Analysing discourse: Textual analysis for social research.
Ferguson, C.(2002). Using the Revised Taxonomy to Plan and Deliver Team-Taught, Integrated, Thematic Units. Theory Into Practice, 41(4), 238-243. https://doi.org/10.1207/s15430421tip4104_6
Foucault, M.(1972). The Order of Things: An Archeology of Human Sciences.
Gagne, R. M.(1972). Domains of learning. Interchange, 3(1), 1-8. https://doi.org/10.1007/BF02145939
Garber, J. & Seligman, M. E. P.(Eds)(1980). Human Helplessness. Theory and Applications.
Gardner, H.(1983). Frames of mind: The theory of multiple intelligences.
Gardner, H., Kornhaber, M. L., & Wake, W. K.(1996). Intelligence: Multiple perspectives. Harcourt Brace College Publishers.
Gordon, L.(2006). Disciplinary decadence: Living thought in trying times. Routledge.
Greene, J. A., & Yu, S. B.(2016). Educating Critical Thinkers: The Role of Epistemic Cognition. Policy Insights from the Behavioral and Brain Sciences, 3(1), 45-53. https://doi.org/ 10.1177/2372732215622223
Guile, D.(2006) What is Distinctive About the Knowledge Economy? Implications for Education. In H. Lauder, P. Brown, J. Dillabough & A. H. Halsey(Eds.), Education, globalization & social change(pp. 355-366).
Gülhan, F. & Şahin, F.(2016). The effects of science-technology-engineering-math(STEM) integration on 5th grade students’ perceptions and attitudes towards these areas. Journal of Human Sciences, 13(1), 603-620.
Guzey, SS, Ring-Whalen, EA, Harwell, M, Peralta, Y.(2017). Life STEM: A case study of life science learning through engineering design. International Journal of Science and Mathematics,17(1),23-42. https://doi.org/10.1007/s10763-017-9860-0
Hamm, C. M.(1989). Philosophical Issues In Education. https://doi.org/10.4324/9780203393109
Hansen, M. & Gonzalez, T.(2014).Investigating the Relationship between STEM Learning Principles and Student Achievement in Math and Science. American Journal of Education, 120(2), 139-171. https://doi.org/10.1086/674376
Herbel-Eisenmann, B. A., Wagner, D., Johnson, K. R., Suh, H., & Figueras, H.(2015). Positioning in mathematics education: Revelations on an imported theory. Educational Studies in Mathematics, 89(2), 185-204. https://doi.org/10.1007/s10649-014-9588-5
Herschbach, D.(2009). Technology education: Foundations and perspectives.
Herschbach, D. R.(2011). The STEM Initiative: Constraints and Challenges. Journal of Stem Teacher Education, 48(1), 96-122. https://doi.org/10.30707/JSTE48.1Herschbach.
Herschbach, D. R.(2011). The STEM Initiative: Constraints and Challenges. Journal of STEM Teacher Education, 48(1),96-122. https://doi.org/10.30707/JSTE48.1Herschbach
Hirst, P. H.(1974). Knowledge and Curriculum.
Hofer, B. K. & Pintrich, P. R.(1997). The Development of Epistemological Theories: Beliefs About Knowledge and Knowing and Their Relation to Learning. Review of Educational Research, 67(1), 88-140. https://doi.org/10.3102/00346543067001088
Hofer, B. K. & Pintrich, P. R.(2002). Personal Epistemology: The Psychology of Beliefs About Knowledge and Knowing. Routledge
Holland, C. (2020). The Implementation of the Next Generation Science Standards and the Tumultuous Fight to Implement Climate Change Awareness in Science Curricula. Brock Education Journal, 29(1), 35-52.
Holmlund, T. D., Lesseig, K., & Slavit, D.(2018). Making sense of “STEM education” in K-12 contexts. International Journal of STEM Education, 5(32), 1-18. https://doi.org/10.1186/s40594-018-0127-2
Honey, M., Pearson G., &Schweingruber, H.(2014). STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. http://www.nap.edu/openbook.php?record_id=18612&page=5.
Hynes, M. M., Mathis, C., Purzer, S., Rynearson, A., & Siverling, E.(2017). Systematic review of research in P‐12 engineering education from 2000–2015. International Journal of Engineering Education, 33(1), 453–462.
Intergovernmental Panel on Climate Change(IPCC)(2013). The Fifth Assessment Report(AR5): The Physical Science Basis. https://www.ipcc.ch/report/ar5/wg1/
Intergovernmental Panel on Climate Change(IPCC)(2021). The Sixth Assessment Report(AR6): The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/
International Baccalaureate(2022). Diploma Programme-Theory of knowledge guide. https://www.ibo.org/programmes/diploma-programme/curriculum/theory-of-knowledge/
Johanes, P.(2017). Epistemic Cognition: A Promising and Necessary Construct for Enriching Large-Scale Online Learning Analysis. Proceedings of the Fourth ACM Conference on Learning @ Scale. https://doi.org/10.1145/3051457.3051462
Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-Solving learning environments.
Kelley, T. R. & Knowles, J. G.(2016) A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1-11. https://doi.org/10.1186/s40594-016-0046-z
Kelly, T. R.(2010). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11. https://doi.org/10.21061/jots.v36i1.a.1
Kennedy, T. J. & Odell, M. R.L.(2014). Engaging Students In STEM Education. Science Education International, 25(3), 246-258.
Kiryak, Z. & Çalik, M.(2018). Improving Grade 7 Students’ Conceptual Understanding of Water Pollution via Common Knowledge Construction Model. International Journal of Science and Mathematics Education, 16, 1025–1046. https://doi.org/ 10.1007/s10763-017-9820-8
Krathwohl, D. R.(2002). A Revision of Bloom's Taxonomy: An Overview. Theory Into Practice, 41(4), 212-218. https://doi.org/10.1207/s15430421tip4104_2
Kroeger, J.(2016).Importance of STEM Education in Elementary School. College of Education, Health, and Human. https://education.fsu.edu/importance-Stem-education-elementary-School
Kuhn, T. S.(1962). The Structure of Scientific Revolutions(2nd ed. 1970).
LaForce, M., Noble, E., King, H., Century, J., Blackwell, C., Holt, S., Ibrahim, A., & Loo, S.(2016). The eight essential elements of inclusive STEM high schools. International Journal of STEM Education, 3(21), 1-11. https://doi.org/10.1186/s40594-016-0054-z
Lang, N.(2017.8.18). STEM learning advances when all students participate. EdTech: Focus on K-12. https://edtechmagazine.com/k12/article/2017/08/stem-learning-advances-when-all-students-participate
Lave, J. & Wenger, E.(1991). Situated learning: Legitimate Periperal Participation.
Lehrer, R., & Schauble, L.(2006). Scientific Thinking and Science Literacy. In K. A. Renninger, I. E. Sigel, W. Damon, & R. M. Lerner(Eds.), Handbook of child psychology: Child psychology in practice(pp. 153–196). John Wiley & Sons Inc.
Li, Y., Wang, K., Xiao, Y., Froyd, J. E.(2019). Research and trends in STEM education a systematic review of journal publications. International Journal of STEM Education, 7(11), 1-16. https://doi.org/10.1186/s40594-020-00207-6
Lombardi, D., Bailey, J. M., Bickel, E. S., & Burrell, S.(2018). Scaffolding Scientific Thinking: Students’ Evaluations and Judgments during Earth Science Knowledge Construction. Contemporary Educational Psychology, 54, 184–198.
Lombardi, D., Nussbaum, EM, & Sinatra, GM(2016). Plausibility judgments in conceptual change and epistemic cognition. Educational Psychologist, 51(1), 35–56. https://doi.org/10.1080/00461520.2015.1113134
Lombardi, D., Sibley, B., & Carroll, K.(2013). What’s the Alternative -Using model-evidence link diagrams to weigh alternative models in argumentation. The Science Teacher, summer, 50-55.
MacLeod, M., & Nersessian, N. J.(2016). Interdisciplinary problem-Solving: Emerging modes in integrative systems biology. European Journal for Philosophy of Science, 6(3), 401–418. https://doi.org/10.1007/s13194-016-0157-x
Marginson, S., Tytler, R., Freeman, B., & Roberts, K.(2013). STEM: country comparisons. http://www.acola.org.au
Maxwell, J. A. (1996). Qualitative research design: An interactive approach. Sage Publications, Inc.
Mitcham, C.(1994). Thinking through Technology: The Path between Engineering and Philosophy.
Moore, T. J., Johnson, C. C., Peters-Burton, E. E., & Guzey, S. S. (2015). The need for a STEM road map. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM Road Map: A Framework for Integrated STEM Education.
Moore, T., Stohlmann, M., Wang, H., Tank, K., Glancy, A., & Roehrig, G.(2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. Cardella(Eds.), Engineering in Pre-College Settings: Synthesizing Research, Policy, and Practices(pp. 35–60).
Muller, J(2000). Reclaiming Knowledge.
Nadelson, L. S. & Seifert, A. L.(2017). Integrated STEM defined: Contexts, challenges, and the future, The Journal of Educational Research, 110(3), 221-223, https://doi.org/10.1080/00220671.2017.1289775
Nakamori, Y., Wierzbicki, A. P., & Zhu, Z.(2011). A Theory of Knowledge Construction Systems. Systems Research and Behavioral Science, 28, 15-39. https://doi.org/10.1002/sres.1046
National Research Council(NRC)(2011). Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. https://doi.org/10.17226/13158
National Research Council(NRC)(2014). STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. https://doi.org/10.17226/18612
National Research Council(NRC)(2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. https://doi.org/10.17226/13165
NGSS, Lead States.(2013). Next generation science standards: For states, by states. https://doi.org/10.17226/18290
Organisation for Economic Co-operation and Development [OECD](2003). Education at a Glance 2003 OECD Indicators. https://www.oecd-ilibrary.org/education/education-at-a-glance-2003_eag-2003-en
Organisation for Economic Co-operation and Development [OECD](2018). Education at a Glance 2018 OECD Indicators. https://www.oecd-ilibrary.org/education/education-at-a-glance-2018_eag-2018-en
Organisation for Economic Co-operation and Development [OECD](2021). Education at a Glance 2021 OECD Indicators. https://www.oecd-ilibrary.org/education/education-at-a-glance-2021_b35a14e5-en
Ornstein, A. C.(1995) Philosophy as a basis for curriculum decision. In A. C. Ornstein & L. S. Behar(Eds.). Contemporary issues in curriculum.(pp. 10-17).
Peppler, K., & Bender, S.(2013). Maker movement spreads innovation one project at a time. Phi Delta Kappan, 95(3), 22-27. https://doi.org/10.1177%2F003172171309500306
Peters-Burton, E. E., House, A., Peters, V., & Remold, J.(2019). Understanding STEM-focused elementary schools: Case study of Walter Bracken STEAM Academy. School Science and Mathematics, 119, 446–456. https://doi.org/10.1111/ssm.12372
Peters-Burton, E. E., Lynch, S., Behrend, T. S., & Means, B. M.(2014). Inclusive STEM High School Design: 10 Critical Components. Theory Into Practice, 53(1), 64-71. https://doi.org/10.1080/00405841.2014.862125
Phillips. D.C.(1985). On what scientists know, and how they know it. In E. W. Eisner(Ed.),. Learning and Teaching the Ways of Knowing, Vol.84. Yearbook of the NSSE (Part II, pp.37-59). Chicago, IL: University of Chicago Press.
Pickering, A.(1995). The mangle of practice: Time, agency, and science. University of Chicago Press.
Pintrich, P. R.(2002). The Role of Metacognitive Knowledge in Learning, Teaching, and Assessing, Theory Into Practice, 41(4), 219-225. https://doi.org/10.1207/s15430421tip4104_3
Polanyi, M.(1966). The Tacit Dimension.
Polanyi, M.(1969). Knowing and Being.
Popper, K. R.(1972). Objective Knowledge.
Project Lead The Way(PLTW)(2021). Inspiring, Engaging, Empowering. https://www.pltw.org/our-programs/pltw-launch
Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S.(2012). Is Adding the E Enough? Investigating the Impact of K-12 Engineering Standards on the Implementation of STEM Integration. School Science and Mathematics, 112(1), 31–44. https://doi.org/10.1111/j.1949-8594.2011.00112.x.
Rogoff, B.(1995). Observing sociocultural activity on three planes: Participatory appropriation, guided participation, and apprenticeship. In J. V. Wertsch, P. del Río, & A. Alvarez(Eds.), Sociocultural studies of mind(pp. 139–164). Cambridge University Press. https://doi.org/10.1017/CBO9781139174299.008
Rosicka, C.(2016.7). Translating STEM education research into practice. Australian Council for Educational Research, Victoria. Retrieved from: https://research.acer.edu.au/professional_dev/10
Sachs, J. D.(2015). The Age of Sustainable Development. Columbia University Press.
Sampson, R. N., and D. Hair.(1990). Natural resources for the 21st century.
Sanders, M.(2009). Integrative STEM Education: A More Robust Explanation. International Technology and Engineering Educators Association. https://www.iteea.org/File.aspx?id=56327&v=8ab6e387
Sanders, M.(2015). The Original “Integrative STEM Education” Definition: Explained. Integrative STEM Education, Virginia Tech March 17. http://hdl.handle.net/10919/51624
Schiro, M.(1978). Curriculum for better schools: The great ideological debate.
Schwab, J. J.(1962). The concept of the structure of a discipline. In Giroux, H., Penna, A., Pinar, W.(Eds.)(1981) Curriculum and instruction: Alternatives in Education.(pp. 51-61).
Science Buddies.(2018). The engineering design process. Science Buddies. https://www.sciencebuddies.org/science-fair-projects/engineering-designprocess/engineering-design-process-Steps#theengineeringdesignprocess
Sengupta, P., Shanahan, M.-C., & Kim, B.(2019). Reimagining STEM education: Critical, transdisciplinary, and embodied education. In P. Sengupta., M.-C. Shanahan., & B. Kim(Eds.). Critical, transdisciplinary and embodied approaches in STEM education(pp. 2-22). Springer.
Shanahan, M.-C., & Nieswandt, M.(2011). Science student role: Evidence of social structural norms specific to school science. Journal of Research in Science Teaching, 48(4), 367–395. Doi.org/ 10.1002/tea.20406
Shanahan, M.-C., Carol-Ann Burke, L. E., & Francis, K.(2016). Using a boundary object perspective to reconsider the meaning of STEM in a Canadian context. Canadian Journal of Science, Mathematics and Technology Education, 16(2), 12-139. https://doi.org/10.1080/14926156.2016.1166296
Siemens-Stiftung(2019). STEM and climate-Learning to act: climate change education in sustainable development. Siemens-Stiftung. https://www.siemens-Stiftung.org/en/foundation/education/climate-change-education/
Sinatra, G. M., Kienhues, D., & Hofer, B. K.(2014). Addressing Challenges to Public Understanding of Science: Epistemic Cognition, Motivated Reasoning, and Conceptual Change. Educational Psychologist, 49(2), 123–138. https://doi.org/10.1080/00461520.2014.916216
Slavit, D., Grace, E., & Lesseig, K. (2021). Student ways of thinking in STEM contexts: A focus on claim making and reasoning. School Science and Mathematics, 121, 466–480. https://doi.org/10.1111/ssm.12501
Soltis, J. F.(1981). Philosophy and Education: Eightieth Year book of the National Society for the Study of Education.
Stahl, E.(2011). The generative nature of epistemological judgments: Focusing on interactions instead of elements to understand the relationship between epistemological beliefs and cognitive flexibility. In J. Elen, E. Stahl, R. Bromme, & G. Clarebout(Eds.), Links between beliefs and cognitive flexibility: lessons learned(pp. 37–60). https://doi.org/10.1007/978-94-007-1793-0_6
Stephan, M. L., Pugalee, D., Cline, J., & Cline, C.(2017). Lesson imaging in math and science: Anticipating student ideas and questions for deeper STEM learning. ASCD.
Sternberg, R. J.(1985). Beyond IQ: A triarchic theory of human intelligence.
Sternberg, R. J., & Sternberg, K. (1999). Cognitive Psychology (6th Ed.).
Stohlmann, M., Moore, T. J., & Roehrig, G.(2012). Considerations for Teaching Integrated STEM Education. Journal of Pre-College Engineering Education Research(J-PEER), 2(1), 28-34. https://doi.org/10.5703/1288284314653
Takeuchi, M. A. & Dadkhahfard, S.(2019). Rethinking bodies of learners through STEM education. In P. Sengupta., M-C. Shanahan., & B. Kim(Eds.). Critical, transdisciplinary and embodied approaches in STEM education(pp.199-216). https://doi.org/10.1007/978-3-030-29489-2_11
Takeuchi, M. A., Sengupta, P., Shanahan, M. C., Adams, J. D. & Hachem, M.(2020). Transdisciplinarity in STEM education: a critical review. Studies in Science Education, 56(2), 213-253. https://doi.org/10.1080/03057267.2020.1755802
Thomas, B., & Watters, J.(2015). Perspectives on Australian, Indian and Malaysian approaches to STEM education. International Journal of Educational Development, 45, 42-53. https://doi.org/10.1016/j.ijedudev.2015.08.002
Tsai,H. -Y., Chung, C. -C., & Lou, S.-J.(2018). Construction and Development of iSTEM Learning Model. EURASIA Journal of Mathematics, Science and Technology Education, 14(1), 15-32. https://doi.org/10.12973/ejmste/78019
UNESCO(2014). Global Citizenship Education: Preparing learners for the challenges of the twenty-first century. https://unesdoc.unesco.org/ark:/48223/pf0000227729
UNESCO(2015). Sustainable Development Goals. (SDGs.). https://en.unesco.org/sustainabledevelopmentgoals
UNESCO(2019a). Let's work together- Education has a key role in helping achieve the Sustainable Development Goals. https://en.unesco.org/gem-report/node/3095
UNESCO(2019b). Why we urgently need to teach and learn about climate change. https://en.unesco.org/news/why-we-urgently-need-teach-and-learn-about-climate-change
UNESCO(2021). Berlin Declaration on Education for Sustainable Development. https://unesdoc.unesco.org/ark:/48223/pf0000381228
UNESCO(1995).United Nations Framework Convention on Climate Change(UNFCCC). https://treaties.un.org/Pages/ViewDetailsIII.aspx?src=IND&mtdsg_no=XXVII-7&chapter=27&Temp=mtdsg3&clang=_en
UNSECO(2020). Education for sustainable development: a roadmap. https://unesdoc.unesco.org/ark:/48223/pf0000374802
UNSECO(2021). Reimagining our futures together: a new social contract for education. https://unesdoc.unesco.org/ark:/48223/pf0000379707.locale=en
Vallance, E.(1985). Ways of Knowing and Curriculum Conceptions: Implications for Program Planning. In E. W. Eisner(Ed). Learning and Teaching the Ways of Knowing, Vol.84. Yearbook of the NSSE (Part II, pp. 199-217), Chicago, IL: University of Chicago Press.
Wendell, K.B., Andrews, C. J., & Paugh, B.(2019). Supporting knowledge construction in elementary engineering design. Science Education, 103, 952–978. https://doi.org/10.1002/sce.21518
Williams, D.(2007). The what, why, and how of contextual teaching in a mathematics classroom. The Mathematics Teacher, 100(8), 572–575.
Wilson‐Lopez, A., & Sias, C. M., & Strong, A. R., & Garlick, J. W., & Minichiello, A., & Acosta Feliz, J. A., & Weingart, S.(2018, June). Argumentation in K–12 engineering education: A review of the literature. [Paper presented]. 2018 ASEE Annual Conference & Exposition, Salt Lake City, Utah. https://peer.asee.org/29816
Winne, P., & Azevedo, R.(2014). Metacognition. In R. Sawyer(Ed.), The Cambridge Handbook of the Learning Sciences(Cambridge Handbooks in Psychology, pp. 63-87). https://doi.org/10.1017/CBO9781139519526.006
Witherspoon, J.L.(2019). Initiating Change: An Investigation of Elementary Educators' Perspectives For Implementing STEM Innovation. Education Dissertations and Projects, 341. https://digitalcommons.gardner-webb.edu/education_etd/341
World Economic Forum(2018). The Future of Jobs Report- Centre for the New Economy and Society. https://www.weforum.org/publications/the-future-of-jobs-report-2018/
World Meteorological Organization(WMO)(2007). The Role of Climatological Normals in a Changing Climate. WMO-TD No. 1377 https://library.wmo.int/records/item/52499-the-role-of-climatological-normals-in-a-changing-climate
World Meteorological Organization(WMO)(2017). WMO Guidelines on the Calculation of Climate Normals. WMO-No. 1203 https://library.wmo.int/records/item/55797-wmo-guidelines-on-the-calculation-of-climate-normals?offset=5
Yıldırım, B., & Altun, Y.(2015). Investigating the effect of STEM education and engineering applications on science laboratory lectures. El-Cezerî Journal of Science and Engineering, 2(2), 28- 40.
Zais, R. S.(1976). Curriculum: Principles and Foundations.