研究生: |
陳映綸 Chen, Ying-Lun |
---|---|
論文名稱: |
NEO 與 GHA 多通道棘波分類系統之低功率電路設計 Low-Power Architecture for Multi-Channel NEO and GHA-based Spike Sorting Circuits |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 棘波分類 、棘波偵測 、特徵擷取 、特殊應用積體電路 、非線性能量運算子 、通用赫賓學習演算法 |
英文關鍵詞: | Spike sorting, Spike detection, Feature extraction, ASIC, NEO, GHA |
論文種類: | 學術論文 |
相關次數: | 點閱:236 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在完成一可植入式棘波分類晶片之電路設計與合成。由於植入式晶片與大腦緊密接觸,晶片面積太大會壓迫腦部,功耗太大可能會導致腦細胞受損,不可不慎。因此在設計時,晶片的面積與功耗會成為重要考量。
本研究提出基於NEO演算法的棘波偵測器以及基於GHA演算法的特徵擷取器,配合架構上的運算單元共享,設計出高效能、低功耗、低面積的電路架構。本研究並且將電路實作於ASIC流程上,相對於FPGA開發,可更有彈性的調整晶片的面積與功耗。本研究也導入了clock gating技術,透過抑制記憶體單元的動態功耗,進一步降低晶片的耗電量。
本論文最後提出電路架構的瓶頸分析,並根據分析結果,選出數組最佳參數進行進一步的面積、功耗分析。我們證明所設計出來的晶片比起其他現有的架構,有更好的面積、功耗表現,並證明clock gating在節省功耗上起了關鍵作用。本論文也簡短討論並說明GHA作為特徵擷取演算法,與在此領域常用的PCA演算法的擷取效果相去不遠,實為一有效率之替代方案。
This research aims to design an implantable spike sorting chip. To minimize possible damage to human brain, the chip area and power consumption specification should be planned carefully.
A spike sorting circuit containing spike detection unit and feature extraction unit is developed. The spike detection unit implements the Nonlinear Energy Operator (NEO) algorithm, and the feature extraction unit is based on the Generalized Hebbian Algorithm (GHA). This work presents an architecture that shares one calculation unit across all channels, which minimizes area cost and power consumption greatly.
The circuit is implemented on ASIC work flow, which gives extended flexibility on area and power adjustment. The circuit also incoporates clock gating technology so to lower power consumption by memory units.
Last in this paper we present a method for parameter choosing. Based on the parameters chosen, a detailed area and power analysis is given. An analysis on GHA performance is also presented, which proved GHA to be an efficient substitution to the well-known PCA algorithm.
[1] Sarah Gibson, Jack W. Judy, and Dejan Markovic. Spike Sorting: The first step in decoding the brain. IEEE Signal Processing Magazine, 29(1):124–143, January 2012.
[2] D. N. Hill, D. Kleinfeld, and S. B. Mehta. Spike Sorting. In Partha Mitra and Hemant Bokil, editors, Observed Brain Dynamics, chapter 9, pages 257–270. Oxford University Press, 2007.
[3] R. Quian Quiroga, Z. Nadasdy, and Y. Ben-Shaul. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation, 16(8):1661–1687, August 2004.
[4] B. Gosselin, A.E. Ayoub, J.-F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, and D. Guitton. A Mixed-Signal Multichip Neural Recording Interface With Bandwidth Reduction. Biomedical Circuits and Systems, 3(3):129–141, May 2009.
[5] J.F. Kaiser. On a simple algorithm to calculate the ‘energy’ of a signal. In Acoustics, Speech, and Signal Processing, volume 1, pages 381–384. IEEE, April 1990.
[6] S. Mukhopadhyay and G.C. Ray. A new interpretation of nonlinear energy operator and its efficacy in spike detection. Biomedical Engineering, 45(2):180–187, February 1998.
[7] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag New York, 2nd edition, 2002.
[8] Tung-Chien Chen, Wentai Liu, and Liang-Gee Chen. VLSI architecture of leading eigenvector generation for on-chip principal component analysis spike sorting system. In Engineering in Medicine and Biology Society, pages 3192–3195. IEEE, August 2008.
[9] Tung-Chien Chen, Kuanfu Chen, Zhi Yang, K. Cockerham, and Wentai Liu. A biomedical multiprocessor SoC for closed-loop neuroprosthetic applications. In Solid-State Circuits Conference – Digest of Technical Papers, pages 434–435,435a. IEEE, February 2009.
[10] Terence D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2(6):459–473, April 1989.
[11] Simon O. Haykin. Neural Networks and Learning Machines. Prentice Hall, 3rd edition, 2008.
[12] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, and C.-S. Poon. Real-Time FPGA-Based Multichannel Spike Sorting Using Hebbian Eigenfilters. Emerging and Selected Topics in Circuits and Systems, 1(4):502–515, January 2012.
[13] Wen-Jyi Hwang, Wei-Hao Lee, Shiow-Jyu Lin, and Sheng-Ying Lai. Efficient Architecture for Spike Sorting in Reconfigurable Hardware. Sensors, 13(11):14860–14887, November 2013.
[14] Chi-En Ke. Efficient ASIC Architecture for Low-Power Multi-Channel Spike Sorting System. Master’s thesis, National Taiwan Normal University, 2014.
[15] Yin Zhou, Tong Wu, Amir Rastegarnia, Cuntai Guan, Edward Keefer, and Zhi Yang. On the robustness of EC-PC spike detection method for online neural recording. Journal of Neuroscience Methods, 235:316–330, September 2014.
[16] Leslie S. Smith. A tool for synthesizing spike trains with realistic interference. Journal of Neuroscience Methods, 159(1):170–180, January 2007.