簡易檢索 / 詳目顯示

研究生: 吳幸璇
Hsing-Hsuane Wu
論文名稱: 鈷鉑表面合金與鐵超薄膜介面的磁性研究
Investigations of magnetic properties of the interface between ultrathin Fe films and CoPt surface alloy
指導教授: 蔡志申
Tsay, Jyh-Shen
何慧瑩
Ho, Huei-Ying
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 171
中文關鍵詞: 表面合金鈷鉑磁性磁交換耦合彈簧效應
英文關鍵詞: surface alloy, coblat, platinum, magnetic properties, exchange-spring magnetic.
論文種類: 學術論文
相關次數: 點閱:171下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

我們利用歐傑電子能譜儀(AES)、低能量電子繞射儀(LEED)及表面磁光柯爾效應儀(SMOKE)探測鐵超薄膜成長在鈷鉑表面合金系統中表面成分、結構及磁性的變化;並且搭配升溫退火效應探討系統隨著退火溫度上升而造成表面成分、結構及磁性的變化。當鈷鉑形成表面合金的溫度為710 K時,鐵薄膜在成長的過程中會發生結構上的轉變,導致極向的柯爾旋轉角均會有最大值,且矯頑力仍維持原鈷鉑合金之大小,顯示其可以產生有效的垂直磁交換耦合彈簧效應。在較低的合金形成溫度550 K時,鐵薄膜在成長的過程中亦會發生結構上的轉變且極向的柯爾旋轉角亦會有最大值,但其柯爾旋轉角與矯頑場均小於710 K的鈷鉑表面合金系統,推測是由於退火溫度較低時,形成的鈷鉑表面合金結構不完美所導致。將鐵超薄膜成長在不同鈷薄膜厚度下所形成的表面合金,發現當鈷薄膜厚度僅有0.7 ML時,較不利於產生垂直的磁交換耦合彈簧效應;故我們可以推論出鐵薄膜成長在鈷鉑表面合金上要具有有效的垂直磁交換耦合彈簧效應時,增加鈷鉑表面合金的退火溫度與增加鈷薄膜的厚度均有利於增強有效的垂直磁交換耦合彈簧效應,藉此可以有效提高儲存密度。將鐵成長在鈷鉑表面合金上並對其進行加熱退火效應,量測磁性及表面原子的變化,由歐傑電子能譜儀觀測表面原子組成,可發現鐵原子隨著退火溫度上升會往基底擴散,而鈷原子則是會先往表面擴散後再繼續往基底擴散。而觀察其矯頑場的變化,可以發現在退火溫度升高至700 K以上時,矯頑場會大幅度上升,推測來源為Fe-Pt的形成,比較鐵成長在白金基底上的退火效應,發現相同的退火溫度中,Fe/Pt(111)系統的矯頑場會大於Fe/Co-Pt/Pt(111),顯示在Fe/Pt(111)系統中鈷的摻雜不利於矯頑場的增加。

關鍵詞:表面合金、鈷鉑、磁性、磁交換耦合彈簧效應

Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and surface magneto-optical Kerr effect (SMOKE) are used to investigate compositions, surface structure and magnetic properties of ultrathin Fe films on the top of Co-Pt surface alloys. On Co-Pt(111) surface alloys formed at 710 K, as Fe films grow to moderate coverage, the polar Kerr rotation increases and the polar coercive force remains the same as Co-Pt alloy. A Fe/CoPt system shows polar exchange-spring behavior. On Co-Pt(111) surface alloys formed at 550 K, the structure of Fe overlayer also changes and the polar Kerr rotation increase. Due to the lower annealing temperature and the imperfect of CoPt layer, both the coercive force and polar Kerr rotation are smaller as compared to that formed at 710 K. For Fe films on 0.7 ML Co-Pt, the polar exchange-spring magnetic behavior is less pronounced. We infer that both higher annealing temperature and thicker Co-Pt are advantageous for polar exchange-spring. As annealing temperature increases below 800 K for a Fe/Co-Pt system, Fe atoms diffuse into substrate and Co atoms diffuse into the surface. At higher temperatures, both Fe and Co atoms intermix with Pt(111) to form alloy phase. The coercive force for 3 ML Fe/1 ML Co-Pt/Pt(111) is small than that of 3 ML Fe/Pt(111). The additive of Co atoms in Fe-Pt is harmful for the performance as a hard magnet.

Keyword:surface alloy, cobalt, platinum, magnetic properties, exchange-spring magnetic.

第一章 緒論 1 第二章 基本原理 5 2-1 薄膜成長 5 2-1-1 薄膜成長模式 5 2-1-2 影響薄膜成長的因素 7 2-2 鐵磁性物質 10 2-2-1 磁性物質的種類 10 2-2-2 鐵磁性物質 14 2-2-3 居禮溫度 16 2-3 磁異向性 18 2-3-1 磁異向能 18 2-3-2 影響磁異向性的因素 21 2-4 表面合金 25 2-5 磁交換耦合彈簧效應 29 第三章 實驗原理與儀器 33 3-1 超高真空系統(ultrahigh vacuum, UHV) 33 3-1-1 需要超高真空系統的理由 34 3-1-2 超高真空系統與抽氣設備 36 3-1-3 樣品清潔與升降溫系統 40 3-1-4 蒸鍍系統 42 3-1-5 氣體管路 44 3-1-6 其他系統 46 3-2 歐傑電子能譜儀 47 3-2-1 歐傑效應 47 3-2-2 歐傑電子能譜儀 49 3-2-3 阻滯電場分析儀 51 3-2-4 歐傑電子能譜術的應用 54 3-3 歐傑訊號計算薄膜厚度 57 3-3-1 歐傑電子訊號比與膜厚之關係 57 3-3-2 平均自由徑的計算 59 3-3-3 背向散射項back-scattering terms的計算 61 3-3-4 cosθ的計算 62 3-3-5 薄膜厚度之計算 64 3-4 低能量電子繞射儀 73 3-4-1 低能量電子繞射儀之基本原理 73 3-4-2 RFA-LEED工作原理 75 3-5 表面磁光柯爾效應儀 77 3-5-1 磁光柯爾效應 77 3-5-2 表面磁光柯爾效應儀及其測量原理 79 3-5-3 表面磁光柯爾效應儀的元件 81 3-5-4 表面磁光柯爾效應儀器的架設流程 83 3-6 樣品準備 85 第四章 Co/Pt(111)與Fe/Pt(111)系統的文獻探討 87 4-1 1ML Co/Pt(111)在不同退火溫度下成長結構及磁性的文獻探討… 87 4-2 Fe/Pt(111)文獻探討 92 4-2-1 Fe/Pt(111)成長結構及磁性文獻探討 92 4-2-2 Fe/Pt(111)在不同退火溫度下成長結構及磁性文獻探討 ...........................................................................................95 第五章 實驗結果與討論 99 5-1 Co-Pt/Pt(111)表面合金的形成 99 5-2 室溫成長Fe薄膜於不同退火溫度下的1 ML Co-Pt/Pt(111)系統磁性探討 102 5-2-1 Fe薄膜成長於710 K的1 ML Co-Pt/Pt(111)系統磁性探討…………………………………………………… ………102 5-2-2 Fe薄膜成長於550 K的1 ML Co-Pt/Pt(111)系統磁性探討….. 116 5-2-3 Fe薄膜成長於300 K的1 ML Co /Pt(111)系統磁性探討…….. 120 5-2-4 比較Fe薄膜成長於不同退火溫度下的1 ML Co-Pt/Pt(111)系統的差異 124 5-3 室溫成長Fe薄膜於退火溫度550 K下不同厚度的Co-Pt/Pt(111)系統磁性探討 128 5-3-1 Fe薄膜成長於550 K的0.7 ML Co-Pt/Pt(111)系統磁性探討….. 128 5-3-2 比較Fe薄膜成長於退火溫度550 K下不同厚度的Co-Pt/Pt(111)系統的差異 132 5-3-3 綜合比較 135 5-4 室溫成長Fe薄膜不同厚度未經退火處理的Co/Pt(111)系統的磁性探討 136 5-4-1 Fe薄膜成長於300 K的2 ML Co /Pt(111)系統磁性探討…….. 136 5-4-2 比較Fe薄膜成長於不同厚度的Co/Pt(111)系統的差異…….. 140 5-5 退火處理對Fe/Co-Pt/Pt(111)系統的磁性探討 141 5-5-1 退火處理對3 ML Fe/1 ML Co-Pt/Pt(111)系統的磁性探討(Co-Pt合金溫度710K) 141 5-5-2 退火處理對1ML Fe/1.2ML Co-Pt/Pt(111)系統的磁性探討(Co-Pt合金溫度550K) 148 5-6 1 ML Fe/1.4 ML Ag/1.5 ML Fe/Pt(111)經退火處理後的磁性探測… 153 第六章 結論 161 參考資料……………………………………………………………....163 附錄-IEEE論文…. ………………………..…171

[1] D. Lambeth, in: G.C. Gadjipanayis (Ed.), NATO ASI Series E 338, 767 (1997).
[2] L. Krusin-Elbaum, T. Shibauchi, B. Argyle, L. Gignac and D. Weller, Nature vol 410, 22 Mar. (2001)
[3] W.B. Zeper and F.J.A. M. Greidanus, J. Appl. Phys. 65, 497 (1989).
[4] C.H. Lee, H. He and W. Vavara, Phys. Rev. Lett. 62, 653 (1989).
[5] D. Pescia, G. Zampieri and G.L. Bona, Phys. Rev. Lett. 58, 933 (1987).
[6] N.C. Koon and B.T. Jonker, Phys. Rev. Lett., 59, 2463 (1987).
[7] C.S. Shern, S.L. Chen, J.S. Tsay, and R. H. Chen, Phys. Rev. B, 58, 7328 (1998).
[8] C.S. Shern, J.S. Tsay, S.L. Chen, and Y.E. Wu, J. Appl. Phys. 85, 228 (1999).
[9] C.W. Su, H.Y. Ho, C.S. Shern and R.H. Chen, Chin. J. Phys. 41, 519 (2003).
[10] F.C. Chen, Y.E. Wu, C.W. Su, and C.S. Shern, Phys. Rev. B 66, 184417 (2002).
[11] W.L. O’Brein and B.P. Tonner, Surf. Sci. 334, 10 (1995)
[12] Y.J. Chen, M.H .Kuo and C.S. Shern, Appl. Phys. Lett. 93, 012503 (2008).
[13] L. Argile and G.E. Rhead, Surf. Sci. Rep. 10, 277 (1989)
[14] 陳福全,國立台灣師範大學碩士論文 (2002)
[15] D.K. Cheng, Field and Wave Electromagnetics, 2/e, 3rd ed. Addison-Wesley, New York, (1989).
[16] E. Bauer, Appl. Surf. Sci. 11/12, 479 (1982).
[17] G.A. Somorjai, Chemistry in two Dimension surfaces, Cornell University Profs. London (1981)
[18] L.Z. Mezey, J. Giber, Jpn. J. Appl. Phys. 21 (1982) 1569.
[19] M. Tikhov, E. Bauer, Surf. Sci. 232 (1990) 73.
[20] 蔡萍實,國立台灣師範大學碩士論文 (1992).
[21] 許宏彰,國立台灣師範大學碩士論文 (2007).
[22] 張正武,國立中正大學碩士論文 (2004).
[23] 曾健家,國立台灣師範大學碩士論文 (2005).
[24] 聶亨芸,國立清華大學碩士論文 (2002).
[25] 何慧瑩,國立台灣師範大學碩士論文 (1998).
[26] E.T. Kulatov, Y.A. Uspenskii, S.V. Halilov, J. Magn. Magn. Mater. 163, 331 (1996)
[27] R. Lawrence Comstock, Introduction to magnetism and magnetic recording, John Wiley & Sons, New York (1999).
[28] 郭明憲,國立台灣師範大學碩士論文 (2007)
[29] J.A.C. Bland, B. Heinrich (Eds), Ultrathin Magnetic Structures Ⅰ, Springer-Verlag, Berlin, 40 (1994).
[30] M.T. Johnson, P.J.H. Bloemen, F.J.A. den Broeder and J.J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).
[31] F.J.A. den Broeder, W. Hoving and P.J.H. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
[32] M. Sakurai, Phys. Rev. B 50, 3609 (1994).
[33] 陳裕善,國立中正大學碩士論文(2005).
[34] D. E. Fowler and J. V. Barth, Phys. Rev. B vol. 53, 9 (1996)
[35] Y.J Chen , C.C. Chang, H.Y. Ho, J.S. Tsay, Thin Solid Films (2011)
[36] A. Aharoni, Introduction to the Theory of Ferromagnetism, Clareddon, Oxford, (1996) ,Chap. 5.
[37] P. Bruno, Phys. Rev. B 39, 865 (1984).
[38] M. Wuttig and X. Liu, Ultrathin metal films, Springer, Berlin, 82 (2004).
[39] 王劭駒,國立台灣師範大學碩士論文 (2010)
[40] C.S. Shern, J.S. Tsay, H.Y. Her, Y.E. Wu, R.H. Chen, Surf. Sci. 429 497–502. (1999)
[41] Y.J. Chen, H.Y. Ho, C.C. Tseng, C.S. Shern, Surf. Sci. 601, 4334 (2007).
[42] 陳耀榮,國立台灣師範大學博士論文 (2008).
[43] J.S. Tsay and C.S. Shern, Chin. J. Phys, 34, 130 (1996).
[44] J.S. Tsay, Y.D. Yao and C.S. Shern, Phys. Rev. B, 58 3609 (1998).
[45] H. Roder, R. Schuster, H. Brune, and K. Kern, Phys. Rev. Lett. 71, 2086 (1993)
[46] 陳信良,國立台灣師範大學碩士論文 (1997)
[47] 曾筱嵐,國立台灣師範大學碩士論文 (2002).
[48] 李盈蓁,國立台灣師範大學博士論文 (2009).
[49] G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).
[50] D. Briggs and M.P. Seah, Practical Surface Analysis, 2nd Ed. John Wiley & Sons, Chichester (1990).
[51] D.L. Walters and C.P. Bhalla, Phys. Rev, A 3, 1919 (1971).
[52] L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach and R.E. Weber, Handbook of Auger electron spectroscopy, Perkin-Elmer (1978).
[53] D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd Ed. John Wiley & Sons, Chichester (1990).
[54] M. P. Seah, J. Vac. Sci. Technol. A 17, 16 (1980)
[55] C.J. Powell, J. Electron Spectrosc, 47 197 (1988)
[56] A. Jablonski and H. Ebel, Surf. Interface Anal.11 627 (1988)
[57] R. Shimizu, Jpn. J. Appl. Phys. 22, 1631 (1983)
[58] C.J. Powell, Surf. Sci., 299/300, 34 (1994)
[59] S. Tanuma, C.J. Powell and D.R. Penn, J. Vac. Sci. Technol. A 8, 2213 (1990)
[60] S. Tanuma, C.J. Powell and D.R. Penn, Surf. Interface Anal. 20, 77 (1993)
[61] Seah and Dench, Quantitative electron spectroscopy of surface (1979)
[62] S. Tanuma and R. Shimizu, Surf. Sci. 124 (1983)
[63] J.A. Bearden and A.F. Burr, Rev. Mod. Phys. 39, 125 (1967).
[64] M. P. Seah, Surf. Sci. 32, 703 (1972).
[65] 陳宿惠,國立台灣師範大學碩士論文 (2000).
[66] R.A. Serway, C.J. Moses and C.A. Moyer, Modern Physics 3rd, P157.
[67] 蔡志申,物理雙月刊,廿五卷五期,605 (2003年10月).
[68] 盧志權,儀器總覽—表面分析儀器,50 (1998).
[69] M. Mansuripur, The Physical Principles oFMagneto-Optical Recording, Cambridge University Press, London, (1998), Chap. 6
[70] J.S. Tsay, C.S. Shern, Surf. Sci. 396,313 (1997)
[71] D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S.D. Bader, Phys. Rev. Lett. 72, 3112 (1994)
[72] J. Shen, M. Klaua, P. Ohresser, H. Jenniches, J. Barthel, Ch. V. Mohan, and J. Kirschner, Phys. Rev. B. vol.56, 17 (1997)
[73] J. Thomassen, F. May, B. Feldmann, M. Wutting, and H. Ibach, Phys. Rev. Lett. 69, 3831 (1992)
[74] D. Suessa, T. Schrefl, S. Fähler, M. Kirschner, G. Hrkac, F. Dorfbauer, and Fidler, Appl. Phys. Let. 87, 012504 (2005)
[75] 張琦京,國立台灣師範大學碩士論文 (2010)
[76] E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991)
[77] B. Laenens, N. Planckaert, J. Demeter, M. Trekels, C. Labbe, C. Strohm, R. Ruffer, K. Temst, A. Vantomme, and J. Meersschaut, Phys. Rev. B 82, 104421 (2010)
[78] A. C. Sun, F. T. Yuan, J. H. Hsu, Y.H. Lin, P.C. Kuo, IEEE Trans. Magn. 45 (2009)
[79] Y. C. Lai, Y. H. Chang, Y. K. Chen, Thin Solid Films. (2004)

下載圖示
QR CODE